1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
|
package math
// The original C code, the long comment, and the constants
// below are from FreeBSD's /usr/src/lib/msun/src/s_log1p.c
// and came with this notice. The go code is a simplified
// version of the original C.
//
// ====================================================
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
//
// Developed at SunPro, a Sun Microsystems, Inc. business.
// Permission to use, copy, modify, and distribute this
// software is freely granted, provided that this notice
// is preserved.
// ====================================================
//
//
// double log1p(double x)
//
// Method :
// 1. Argument Reduction: find k and f such that
// 1+x = 2**k * (1+f),
// where sqrt(2)/2 < 1+f < sqrt(2) .
//
// Note. If k=0, then f=x is exact. However, if k!=0, then f
// may not be representable exactly. In that case, a correction
// term is need. Let u=1+x rounded. Let c = (1+x)-u, then
// log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
// and add back the correction term c/u.
// (Note: when x > 2**53, one can simply return log(x))
//
// 2. Approximation of log1p(f).
// Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
// = 2s + 2/3 s**3 + 2/5 s**5 + .....,
// = 2s + s*R
// We use a special Reme algorithm on [0,0.1716] to generate
// a polynomial of degree 14 to approximate R The maximum error
// of this polynomial approximation is bounded by 2**-58.45. In
// other words,
// 2 4 6 8 10 12 14
// R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
// (the values of Lp1 to Lp7 are listed in the program)
// and
// | 2 14 | -58.45
// | Lp1*s +...+Lp7*s - R(z) | <= 2
// | |
// Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
// In order to guarantee error in log below 1ulp, we compute log
// by
// log1p(f) = f - (hfsq - s*(hfsq+R)).
//
// 3. Finally, log1p(x) = k*ln2 + log1p(f).
// = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
// Here ln2 is split into two floating point number:
// ln2_hi + ln2_lo,
// where n*ln2_hi is always exact for |n| < 2000.
//
// Special cases:
// log1p(x) is NaN with signal if x < -1 (including -INF) ;
// log1p(+INF) is +INF; log1p(-1) is -INF with signal;
// log1p(NaN) is that NaN with no signal.
//
// Accuracy:
// according to an error analysis, the error is always less than
// 1 ulp (unit in the last place).
//
// Constants:
// The hexadecimal values are the intended ones for the following
// constants. The decimal values may be used, provided that the
// compiler will convert from decimal to binary accurately enough
// to produce the hexadecimal values shown.
//
// Note: Assuming log() return accurate answer, the following
// algorithm can be used to compute log1p(x) to within a few ULP:
//
// u = 1+x;
// if(u==1.0) return x ; else
// return log(u)*(x/(u-1.0));
//
// See HP-15C Advanced Functions Handbook, p.193.
log1p :: proc {
log1p_f16,
log1p_f32,
log1p_f64,
log1p_f16le,
log1p_f16be,
log1p_f32le,
log1p_f32be,
log1p_f64le,
log1p_f64be,
}
@(require_results) log1p_f16 :: proc "contextless" (x: f16) -> f16 { return f16(log1p_f64(f64(x))) }
@(require_results) log1p_f32 :: proc "contextless" (x: f32) -> f32 { return f32(log1p_f64(f64(x))) }
@(require_results) log1p_f16le :: proc "contextless" (x: f16le) -> f16le { return f16le(log1p_f64(f64(x))) }
@(require_results) log1p_f16be :: proc "contextless" (x: f16be) -> f16be { return f16be(log1p_f64(f64(x))) }
@(require_results) log1p_f32le :: proc "contextless" (x: f32le) -> f32le { return f32le(log1p_f64(f64(x))) }
@(require_results) log1p_f32be :: proc "contextless" (x: f32be) -> f32be { return f32be(log1p_f64(f64(x))) }
@(require_results) log1p_f64le :: proc "contextless" (x: f64le) -> f64le { return f64le(log1p_f64(f64(x))) }
@(require_results) log1p_f64be :: proc "contextless" (x: f64be) -> f64be { return f64be(log1p_f64(f64(x))) }
@(require_results)
log1p_f64 :: proc "contextless" (x: f64) -> f64 {
SQRT2_M1 :: 0h3fda827999fcef34 // sqrt(2)-1
SQRT2_HALF_M1 :: 0hbfd2bec333018866 // sqrt(2)/2-1
SMALL :: 0h3e20000000000000 // 2**-29
TINY :: 0h3c90000000000000 // 2**-54
TWO53 :: 0h4340000000000000 // 2**53
LN2HI :: 0h3fe62e42fee00000
LN2LO :: 0h3dea39ef35793c76
LP1 :: 0h3FE5555555555593
LP2 :: 0h3FD999999997FA04
LP3 :: 0h3FD2492494229359
LP4 :: 0h3FCC71C51D8E78AF
LP5 :: 0h3FC7466496CB03DE
LP6 :: 0h3FC39A09D078C69F
LP7 :: 0h3FC2F112DF3E5244
switch {
case x < -1 || is_nan(x):
return nan_f64()
case x == -1:
return inf_f64(-1)
case is_inf(x, 1):
return inf_f64(+1)
}
absx := abs(x)
f: f64
iu: u64
k := 1
if absx < SQRT2_M1 { // |x| < sqrt(2)-1
if absx < SMALL { // |x| < 2**-29
if absx < TINY { // |x| < 2**-54
return x
}
return x - x*x*0.5
}
if x > SQRT2_HALF_M1 { // sqrt(2)/2-1 < x
// (sqrt(2)/2-1) < x < (sqrt(2)-1)
k = 0
f = x
iu = 1
}
}
c: f64
if k != 0 {
u: f64
if absx < TWO53 { // 1<<53
u = 1.0 + x
iu = transmute(u64)u
k = int((iu >> 52) - 1023)
// correction term
if k > 0 {
c = 1.0 - (u - x)
} else {
c = x - (u - 1.0)
}
c /= u
} else {
u = x
iu = transmute(u64)u
k = int((iu >> 52) - 1023)
c = 0
}
iu &= 0x000fffffffffffff
if iu < 0x0006a09e667f3bcd { // mantissa of sqrt(2)
u = transmute(f64)(iu | 0x3ff0000000000000) // normalize u
} else {
k += 1
u = transmute(f64)(iu | 0x3fe0000000000000) // normalize u/2
iu = (0x0010000000000000 - iu) >> 2
}
f = u - 1.0 // sqrt(2)/2 < u < sqrt(2)
}
hfsq := 0.5 * f * f
s, R, z: f64
if iu == 0 { // |f| < 2**-20
if f == 0 {
if k == 0 {
return 0
}
c += f64(k) * LN2LO
return f64(k)*LN2HI + c
}
R = hfsq * (1.0 - 0.66666666666666666*f) // avoid division
if k == 0 {
return f - R
}
return f64(k)*LN2HI - ((R - (f64(k)*LN2LO + c)) - f)
}
s = f / (2.0 + f)
z = s * s
R = z * (LP1 + z*(LP2+z*(LP3+z*(LP4+z*(LP5+z*(LP6+z*LP7))))))
if k == 0 {
return f - (hfsq - s*(hfsq+R))
}
return f64(k)*LN2HI - ((hfsq - (s*(hfsq+R) + (f64(k)*LN2LO + c))) - f)
}
|