1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
|
import (
"fmt.odin";
"os.odin";
"raw.odin";
)
foreign __llvm_core {
swap :: proc(b: u16) -> u16 #link_name "llvm.bswap.i16" ---;
swap :: proc(b: u32) -> u32 #link_name "llvm.bswap.i32" ---;
swap :: proc(b: u64) -> u64 #link_name "llvm.bswap.i64" ---;
}
set :: proc(data: rawptr, value: i32, len: int) -> rawptr #cc_contextless {
return __mem_set(data, value, len);
}
zero :: proc(data: rawptr, len: int) -> rawptr #cc_contextless {
return __mem_zero(data, len);
}
copy :: proc(dst, src: rawptr, len: int) -> rawptr #cc_contextless {
return __mem_copy(dst, src, len);
}
copy_non_overlapping :: proc(dst, src: rawptr, len: int) -> rawptr #cc_contextless {
return __mem_copy_non_overlapping(dst, src, len);
}
compare :: proc(a, b: []u8) -> int #cc_contextless {
return __mem_compare(&a[0], &b[0], min(len(a), len(b)));
}
slice_ptr :: proc(ptr: ^$T, len: int) -> []T #cc_contextless {
assert(len >= 0);
slice := raw.Slice{data = ptr, len = len, cap = len};
return (cast(^[]T)&slice)^;
}
slice_ptr :: proc(ptr: ^$T, len, cap: int) -> []T #cc_contextless {
assert(0 <= len && len <= cap);
slice := raw.Slice{data = ptr, len = len, cap = cap};
return (cast(^[]T)&slice)^;
}
slice_to_bytes :: proc(slice: []$T) -> []u8 #cc_contextless {
s := cast(^raw.Slice)&slice;
s.len *= size_of(T);
s.cap *= size_of(T);
return (cast(^[]u8)s)^;
}
kilobytes :: proc(x: int) -> int #inline #cc_contextless { return (x) * 1024; }
megabytes :: proc(x: int) -> int #inline #cc_contextless { return kilobytes(x) * 1024; }
gigabytes :: proc(x: int) -> int #inline #cc_contextless { return megabytes(x) * 1024; }
terabytes :: proc(x: int) -> int #inline #cc_contextless { return gigabytes(x) * 1024; }
is_power_of_two :: proc(x: int) -> bool {
if x <= 0 do return false;
return (x & (x-1)) == 0;
}
align_forward :: proc(ptr: rawptr, align: int) -> rawptr {
assert(is_power_of_two(align));
a := uint(align);
p := uint(ptr);
modulo := p & (a-1);
if modulo != 0 do p += a - modulo;
return rawptr(p);
}
AllocationHeader :: struct {
size: int;
}
allocation_header_fill :: proc(header: ^AllocationHeader, data: rawptr, size: int) {
header.size = size;
ptr := cast(^uint)(header+1);
n := cast(^uint)data - ptr;
for i in 0..n {
(ptr+i)^ = ~uint(0);
}
}
allocation_header :: proc(data: rawptr) -> ^AllocationHeader {
if data == nil do return nil;
p := cast(^uint)data;
for (p-1)^ == ~uint(0) do p = (p-1);
return cast(^AllocationHeader)(p-1);
}
// Custom allocators
Arena :: struct {
backing: Allocator;
offset: int;
memory: []u8;
temp_count: int;
}
ArenaTempMemory :: struct {
arena: ^Arena;
original_count: int;
}
init_arena_from_memory :: proc(using a: ^Arena, data: []u8) {
backing = Allocator{};
memory = data[..0];
temp_count = 0;
}
init_arena_from_context :: proc(using a: ^Arena, size: int) {
backing = context.allocator;
memory = make([]u8, size);
temp_count = 0;
}
destroy_arena :: proc(using a: ^Arena) {
if backing.procedure != nil {
push_allocator backing {
free(memory);
memory = nil;
offset = 0;
}
}
}
arena_allocator :: proc(arena: ^Arena) -> Allocator {
return Allocator{
procedure = arena_allocator_proc,
data = arena,
};
}
arena_allocator_proc :: proc(allocator_data: rawptr, mode: Allocator.Mode,
size, alignment: int,
old_memory: rawptr, old_size: int, flags: u64) -> rawptr {
using Allocator.Mode;
arena := cast(^Arena)allocator_data;
match mode {
case Alloc:
total_size := size + alignment;
if arena.offset + total_size > len(arena.memory) {
fmt.fprintln(os.stderr, "Arena out of memory");
return nil;
}
#no_bounds_check end := &arena.memory[arena.offset];
ptr := align_forward(end, alignment);
arena.offset += total_size;
return zero(ptr, size);
case Free:
// NOTE(bill): Free all at once
// Use ArenaTempMemory if you want to free a block
case FreeAll:
arena.offset = 0;
case Resize:
return default_resize_align(old_memory, old_size, size, alignment);
}
return nil;
}
begin_arena_temp_memory :: proc(a: ^Arena) -> ArenaTempMemory {
tmp: ArenaTempMemory;
tmp.arena = a;
tmp.original_count = len(a.memory);
a.temp_count += 1;
return tmp;
}
end_arena_temp_memory :: proc(using tmp: ArenaTempMemory) {
assert(len(arena.memory) >= original_count);
assert(arena.temp_count > 0);
arena.memory = arena.memory[..original_count];
arena.temp_count -= 1;
}
align_of_type_info :: proc(type_info: ^TypeInfo) -> int {
prev_pow2 :: proc(n: i64) -> i64 {
if n <= 0 do return 0;
n |= n >> 1;
n |= n >> 2;
n |= n >> 4;
n |= n >> 8;
n |= n >> 16;
n |= n >> 32;
return n - (n >> 1);
}
WORD_SIZE :: size_of(int);
MAX_ALIGN :: size_of([vector 64]f64); // TODO(bill): Should these constants be builtin constants?
using TypeInfo;
match info in type_info.variant {
case Named:
return align_of_type_info(info.base);
case Integer:
return type_info.align;
case Rune:
return type_info.align;
case Float:
return type_info.align;
case String:
return WORD_SIZE;
case Boolean:
return 1;
case Any:
return WORD_SIZE;
case Pointer:
return WORD_SIZE;
case Procedure:
return WORD_SIZE;
case Array:
return align_of_type_info(info.elem);
case DynamicArray:
return WORD_SIZE;
case Slice:
return WORD_SIZE;
case Vector:
size := size_of_type_info(info.elem);
count := int(max(prev_pow2(i64(info.count)), 1));
total := size * count;
return clamp(total, 1, MAX_ALIGN);
case Tuple:
return type_info.align;
case Struct:
return type_info.align;
case Union:
return type_info.align;
case Enum:
return align_of_type_info(info.base);
case Map:
return align_of_type_info(info.generated_struct);
}
return 0;
}
align_formula :: proc(size, align: int) -> int {
result := size + align-1;
return result - result%align;
}
size_of_type_info :: proc(type_info: ^TypeInfo) -> int {
WORD_SIZE :: size_of(int);
using TypeInfo;
match info in type_info.variant {
case Named:
return size_of_type_info(info.base);
case Integer:
return type_info.size;
case Rune:
return type_info.size;
case Float:
return type_info.size;
case String:
return 2*WORD_SIZE;
case Boolean:
return 1;
case Any:
return 2*WORD_SIZE;
case Pointer:
return WORD_SIZE;
case Procedure:
return WORD_SIZE;
case Array:
count := info.count;
if count == 0 do return 0;
size := size_of_type_info(info.elem);
align := align_of_type_info(info.elem);
alignment := align_formula(size, align);
return alignment*(count-1) + size;
case DynamicArray:
return size_of(rawptr) + 2*size_of(int) + size_of(Allocator);
case Slice:
return 2*WORD_SIZE;
case Vector:
count := info.count;
if count == 0 do return 0;
size := size_of_type_info(info.elem);
align := align_of_type_info(info.elem);
alignment := align_formula(size, align);
return alignment*(count-1) + size;
case Struct:
return type_info.size;
case Union:
return type_info.size;
case Enum:
return size_of_type_info(info.base);
case Map:
return size_of_type_info(info.generated_struct);
}
return 0;
}
|