1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
|
package mem
import "base:runtime"
import "base:intrinsics"
Byte :: runtime.Byte
Kilobyte :: runtime.Kilobyte
Megabyte :: runtime.Megabyte
Gigabyte :: runtime.Gigabyte
Terabyte :: runtime.Terabyte
Petabyte :: runtime.Petabyte
Exabyte :: runtime.Exabyte
set :: proc "contextless" (data: rawptr, value: byte, len: int) -> rawptr {
return runtime.memset(data, i32(value), len)
}
zero :: proc "contextless" (data: rawptr, len: int) -> rawptr {
intrinsics.mem_zero(data, len)
return data
}
zero_explicit :: proc "contextless" (data: rawptr, len: int) -> rawptr {
// This routine tries to avoid the compiler optimizing away the call,
// so that it is always executed. It is intended to provided
// equivalent semantics to those provided by the C11 Annex K 3.7.4.1
// memset_s call.
intrinsics.mem_zero_volatile(data, len) // Use the volatile mem_zero
intrinsics.atomic_thread_fence(.Seq_Cst) // Prevent reordering
return data
}
zero_item :: proc "contextless" (item: $P/^$T) -> P {
intrinsics.mem_zero(item, size_of(T))
return item
}
zero_slice :: proc "contextless" (data: $T/[]$E) -> T {
zero(raw_data(data), size_of(E)*len(data))
return data
}
copy :: proc "contextless" (dst, src: rawptr, len: int) -> rawptr {
intrinsics.mem_copy(dst, src, len)
return dst
}
copy_non_overlapping :: proc "contextless" (dst, src: rawptr, len: int) -> rawptr {
intrinsics.mem_copy_non_overlapping(dst, src, len)
return dst
}
compare :: proc "contextless" (a, b: []byte) -> int {
res := compare_byte_ptrs(raw_data(a), raw_data(b), min(len(a), len(b)))
if res == 0 && len(a) != len(b) {
return len(a) <= len(b) ? -1 : +1
} else if len(a) == 0 && len(b) == 0 {
return 0
}
return res
}
@(require_results)
compare_byte_ptrs :: proc "contextless" (a, b: ^byte, n: int) -> int #no_bounds_check {
return runtime.memory_compare(a, b, n)
}
@(require_results)
check_zero :: proc(data: []byte) -> bool {
return check_zero_ptr(raw_data(data), len(data))
}
@(require_results)
check_zero_ptr :: proc(ptr: rawptr, len: int) -> bool {
switch {
case len <= 0:
return true
case ptr == nil:
return true
}
switch len {
case 1: return (^u8)(ptr)^ == 0
case 2: return intrinsics.unaligned_load((^u16)(ptr)) == 0
case 4: return intrinsics.unaligned_load((^u32)(ptr)) == 0
case 8: return intrinsics.unaligned_load((^u64)(ptr)) == 0
}
start := uintptr(ptr)
start_aligned := align_forward_uintptr(start, align_of(uintptr))
end := start + uintptr(len)
end_aligned := align_backward_uintptr(end, align_of(uintptr))
for b in start..<start_aligned {
if (^byte)(b)^ != 0 {
return false
}
}
for b := start_aligned; b < end_aligned; b += size_of(uintptr) {
if (^uintptr)(b)^ != 0 {
return false
}
}
for b in end_aligned..<end {
if (^byte)(b)^ != 0 {
return false
}
}
return true
}
@(require_results)
simple_equal :: proc "contextless" (a, b: $T) -> bool where intrinsics.type_is_simple_compare(T) {
a, b := a, b
return compare_byte_ptrs((^byte)(&a), (^byte)(&b), size_of(T)) == 0
}
@(require_results)
compare_ptrs :: proc "contextless" (a, b: rawptr, n: int) -> int {
return compare_byte_ptrs((^byte)(a), (^byte)(b), n)
}
ptr_offset :: intrinsics.ptr_offset
ptr_sub :: intrinsics.ptr_sub
@(require_results)
slice_ptr :: proc "contextless" (ptr: ^$T, len: int) -> []T {
return ([^]T)(ptr)[:len]
}
@(require_results)
byte_slice :: #force_inline proc "contextless" (data: rawptr, #any_int len: int) -> []byte {
return ([^]u8)(data)[:max(len, 0)]
}
@(require_results)
slice_to_bytes :: proc "contextless" (slice: $E/[]$T) -> []byte {
s := transmute(Raw_Slice)slice
s.len *= size_of(T)
return transmute([]byte)s
}
@(require_results)
slice_data_cast :: proc "contextless" ($T: typeid/[]$A, slice: $S/[]$B) -> T {
when size_of(A) == 0 || size_of(B) == 0 {
return nil
} else {
s := transmute(Raw_Slice)slice
s.len = (len(slice) * size_of(B)) / size_of(A)
return transmute(T)s
}
}
@(require_results)
slice_to_components :: proc "contextless" (slice: $E/[]$T) -> (data: ^T, len: int) {
s := transmute(Raw_Slice)slice
return (^T)(s.data), s.len
}
@(require_results)
buffer_from_slice :: proc "contextless" (backing: $T/[]$E) -> [dynamic]E {
return transmute([dynamic]E)Raw_Dynamic_Array{
data = raw_data(backing),
len = 0,
cap = len(backing),
allocator = Allocator{
procedure = nil_allocator_proc,
data = nil,
},
}
}
@(require_results)
ptr_to_bytes :: proc "contextless" (ptr: ^$T, len := 1) -> []byte {
return transmute([]byte)Raw_Slice{ptr, len*size_of(T)}
}
@(require_results)
any_to_bytes :: proc "contextless" (val: any) -> []byte {
ti := type_info_of(val.id)
size := ti != nil ? ti.size : 0
return transmute([]byte)Raw_Slice{val.data, size}
}
@(require_results)
is_power_of_two :: proc "contextless" (x: uintptr) -> bool {
if x <= 0 {
return false
}
return (x & (x-1)) == 0
}
@(require_results)
align_forward :: proc(ptr: rawptr, align: uintptr) -> rawptr {
return rawptr(align_forward_uintptr(uintptr(ptr), align))
}
@(require_results)
align_forward_uintptr :: proc(ptr, align: uintptr) -> uintptr {
assert(is_power_of_two(align))
p := ptr
modulo := p & (align-1)
if modulo != 0 {
p += align - modulo
}
return p
}
@(require_results)
align_forward_int :: proc(ptr, align: int) -> int {
return int(align_forward_uintptr(uintptr(ptr), uintptr(align)))
}
@(require_results)
align_forward_uint :: proc(ptr, align: uint) -> uint {
return uint(align_forward_uintptr(uintptr(ptr), uintptr(align)))
}
@(require_results)
align_backward :: proc(ptr: rawptr, align: uintptr) -> rawptr {
return rawptr(align_backward_uintptr(uintptr(ptr), align))
}
@(require_results)
align_backward_uintptr :: proc(ptr, align: uintptr) -> uintptr {
return align_forward_uintptr(ptr - align + 1, align)
}
@(require_results)
align_backward_int :: proc(ptr, align: int) -> int {
return int(align_backward_uintptr(uintptr(ptr), uintptr(align)))
}
@(require_results)
align_backward_uint :: proc(ptr, align: uint) -> uint {
return uint(align_backward_uintptr(uintptr(ptr), uintptr(align)))
}
@(require_results)
context_from_allocator :: proc(a: Allocator) -> type_of(context) {
context.allocator = a
return context
}
@(require_results)
reinterpret_copy :: proc "contextless" ($T: typeid, ptr: rawptr) -> (value: T) {
copy(&value, ptr, size_of(T))
return
}
Fixed_Byte_Buffer :: distinct [dynamic]byte
@(require_results)
make_fixed_byte_buffer :: proc "contextless" (backing: []byte) -> Fixed_Byte_Buffer {
s := transmute(Raw_Slice)backing
d: Raw_Dynamic_Array
d.data = s.data
d.len = 0
d.cap = s.len
d.allocator = Allocator{
procedure = nil_allocator_proc,
data = nil,
}
return transmute(Fixed_Byte_Buffer)d
}
@(require_results)
align_formula :: proc "contextless" (size, align: int) -> int {
result := size + align-1
return result - result%align
}
@(require_results)
calc_padding_with_header :: proc "contextless" (ptr: uintptr, align: uintptr, header_size: int) -> int {
p, a := ptr, align
modulo := p & (a-1)
padding := uintptr(0)
if modulo != 0 {
padding = a - modulo
}
needed_space := uintptr(header_size)
if padding < needed_space {
needed_space -= padding
if needed_space & (a-1) > 0 {
padding += align * (1+(needed_space/align))
} else {
padding += align * (needed_space/align)
}
}
return int(padding)
}
@(require_results, deprecated="prefer 'slice.clone'")
clone_slice :: proc(slice: $T/[]$E, allocator := context.allocator, loc := #caller_location) -> (new_slice: T) {
new_slice, _ = make(T, len(slice), allocator, loc)
runtime.copy(new_slice, slice)
return new_slice
}
|