1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
|
package mem
// The Rollback Stack Allocator was designed for the test runner to be fast,
// able to grow, and respect the Tracking Allocator's requirement for
// individual frees. It is not overly concerned with fragmentation, however.
//
// It has support for expansion when configured with a block allocator and
// limited support for out-of-order frees.
//
// Allocation has constant-time best and usual case performance.
// At worst, it is linear according to the number of memory blocks.
//
// Allocation follows a first-fit strategy when there are multiple memory
// blocks.
//
// Freeing has constant-time best and usual case performance.
// At worst, it is linear according to the number of memory blocks and number
// of freed items preceding the last item in a block.
//
// Resizing has constant-time performance, if it's the last item in a block, or
// the new size is smaller. Naturally, this becomes linear-time if there are
// multiple blocks to search for the pointer's owning block. Otherwise, the
// allocator defaults to a combined alloc & free operation internally.
//
// Out-of-order freeing is accomplished by collapsing a run of freed items
// from the last allocation backwards.
//
// Each allocation has an overhead of 8 bytes and any extra bytes to satisfy
// the requested alignment.
import "base:runtime"
ROLLBACK_STACK_DEFAULT_BLOCK_SIZE :: 4 * Megabyte
// This limitation is due to the size of `prev_ptr`, but it is only for the
// head block; any allocation in excess of the allocator's `block_size` is
// valid, so long as the block allocator can handle it.
//
// This is because allocations over the block size are not split up if the item
// within is freed; they are immediately returned to the block allocator.
ROLLBACK_STACK_MAX_HEAD_BLOCK_SIZE :: 2 * Gigabyte
Rollback_Stack_Header :: bit_field u64 {
prev_offset: uintptr | 32,
is_free: bool | 1,
prev_ptr: uintptr | 31,
}
Rollback_Stack_Block :: struct {
next_block: ^Rollback_Stack_Block,
last_alloc: rawptr,
offset: uintptr,
buffer: []byte,
}
Rollback_Stack :: struct {
head: ^Rollback_Stack_Block,
block_size: int,
block_allocator: Allocator,
}
@(private="file", require_results)
rb_ptr_in_bounds :: proc(block: ^Rollback_Stack_Block, ptr: rawptr) -> bool {
start := raw_data(block.buffer)
end := start[block.offset:]
return start < ptr && ptr <= end
}
@(private="file", require_results)
rb_find_ptr :: proc(stack: ^Rollback_Stack, ptr: rawptr) -> (
parent: ^Rollback_Stack_Block,
block: ^Rollback_Stack_Block,
header: ^Rollback_Stack_Header,
err: Allocator_Error,
) {
for block = stack.head; block != nil; block = block.next_block {
if rb_ptr_in_bounds(block, ptr) {
header = cast(^Rollback_Stack_Header)(cast(uintptr)ptr - size_of(Rollback_Stack_Header))
return
}
parent = block
}
return nil, nil, nil, .Invalid_Pointer
}
@(private="file", require_results)
rb_find_last_alloc :: proc(stack: ^Rollback_Stack, ptr: rawptr) -> (
block: ^Rollback_Stack_Block,
header: ^Rollback_Stack_Header,
ok: bool,
) {
for block = stack.head; block != nil; block = block.next_block {
if block.last_alloc == ptr {
header = cast(^Rollback_Stack_Header)(cast(uintptr)ptr - size_of(Rollback_Stack_Header))
return block, header, true
}
}
return nil, nil, false
}
@(private="file")
rb_rollback_block :: proc(block: ^Rollback_Stack_Block, header: ^Rollback_Stack_Header) {
header := header
for block.offset > 0 && header.is_free {
block.offset = header.prev_offset
block.last_alloc = raw_data(block.buffer)[header.prev_ptr:]
header = cast(^Rollback_Stack_Header)(raw_data(block.buffer)[header.prev_ptr - size_of(Rollback_Stack_Header):])
}
}
@(private="file", require_results)
rb_free :: proc(stack: ^Rollback_Stack, ptr: rawptr) -> Allocator_Error {
parent, block, header := rb_find_ptr(stack, ptr) or_return
if header.is_free {
return .Invalid_Pointer
}
header.is_free = true
if block.last_alloc == ptr {
block.offset = header.prev_offset
rb_rollback_block(block, header)
}
if parent != nil && block.offset == 0 {
parent.next_block = block.next_block
runtime.mem_free_with_size(block, size_of(Rollback_Stack_Block) + len(block.buffer), stack.block_allocator)
}
return nil
}
@(private="file")
rb_free_all :: proc(stack: ^Rollback_Stack) {
for block := stack.head.next_block; block != nil; /**/ {
next_block := block.next_block
runtime.mem_free_with_size(block, size_of(Rollback_Stack_Block) + len(block.buffer), stack.block_allocator)
block = next_block
}
stack.head.next_block = nil
stack.head.last_alloc = nil
stack.head.offset = 0
}
@(private="file", require_results)
rb_resize :: proc(stack: ^Rollback_Stack, ptr: rawptr, old_size, size, alignment: int) -> (result: []byte, err: Allocator_Error) {
if ptr != nil {
if block, _, ok := rb_find_last_alloc(stack, ptr); ok {
// `block.offset` should never underflow because it is contingent
// on `old_size` in the first place, assuming sane arguments.
assert(block.offset >= cast(uintptr)old_size, "Rollback Stack Allocator received invalid `old_size`.")
if block.offset + cast(uintptr)size - cast(uintptr)old_size < cast(uintptr)len(block.buffer) {
// Prevent singleton allocations from fragmenting by forbidding
// them to shrink, removing the possibility of overflow bugs.
if len(block.buffer) <= stack.block_size {
block.offset += cast(uintptr)size - cast(uintptr)old_size
}
#no_bounds_check return (cast([^]byte)ptr)[:size], nil
}
}
}
result = rb_alloc(stack, size, alignment) or_return
runtime.mem_copy_non_overlapping(raw_data(result), ptr, old_size)
err = rb_free(stack, ptr)
return
}
@(private="file", require_results)
rb_alloc :: proc(stack: ^Rollback_Stack, size, alignment: int) -> (result: []byte, err: Allocator_Error) {
parent: ^Rollback_Stack_Block
for block := stack.head; /**/; block = block.next_block {
when !ODIN_DISABLE_ASSERT {
allocated_new_block: bool
}
if block == nil {
if stack.block_allocator.procedure == nil {
return nil, .Out_Of_Memory
}
minimum_size_required := size_of(Rollback_Stack_Header) + size + alignment - 1
new_block_size := max(minimum_size_required, stack.block_size)
block = rb_make_block(new_block_size, stack.block_allocator) or_return
parent.next_block = block
when !ODIN_DISABLE_ASSERT {
allocated_new_block = true
}
}
start := raw_data(block.buffer)[block.offset:]
padding := cast(uintptr)calc_padding_with_header(cast(uintptr)start, cast(uintptr)alignment, size_of(Rollback_Stack_Header))
if block.offset + padding + cast(uintptr)size > cast(uintptr)len(block.buffer) {
when !ODIN_DISABLE_ASSERT {
if allocated_new_block {
panic("Rollback Stack Allocator allocated a new block but did not use it.")
}
}
parent = block
continue
}
header := cast(^Rollback_Stack_Header)(start[padding - size_of(Rollback_Stack_Header):])
ptr := start[padding:]
header^ = {
prev_offset = block.offset,
prev_ptr = uintptr(0) if block.last_alloc == nil else cast(uintptr)block.last_alloc - cast(uintptr)raw_data(block.buffer),
is_free = false,
}
block.last_alloc = ptr
block.offset += padding + cast(uintptr)size
if len(block.buffer) > stack.block_size {
// This block exceeds the allocator's standard block size and is considered a singleton.
// Prevent any further allocations on it.
block.offset = cast(uintptr)len(block.buffer)
}
#no_bounds_check return ptr[:size], nil
}
return nil, .Out_Of_Memory
}
@(private="file", require_results)
rb_make_block :: proc(size: int, allocator: Allocator) -> (block: ^Rollback_Stack_Block, err: Allocator_Error) {
buffer := runtime.mem_alloc(size_of(Rollback_Stack_Block) + size, align_of(Rollback_Stack_Block), allocator) or_return
block = cast(^Rollback_Stack_Block)raw_data(buffer)
#no_bounds_check block.buffer = buffer[size_of(Rollback_Stack_Block):]
return
}
rollback_stack_init_buffered :: proc(stack: ^Rollback_Stack, buffer: []byte, location := #caller_location) {
MIN_SIZE :: size_of(Rollback_Stack_Block) + size_of(Rollback_Stack_Header) + size_of(rawptr)
assert(len(buffer) >= MIN_SIZE, "User-provided buffer to Rollback Stack Allocator is too small.", location)
block := cast(^Rollback_Stack_Block)raw_data(buffer)
block^ = {}
#no_bounds_check block.buffer = buffer[size_of(Rollback_Stack_Block):]
stack^ = {}
stack.head = block
stack.block_size = len(block.buffer)
}
rollback_stack_init_dynamic :: proc(
stack: ^Rollback_Stack,
block_size : int = ROLLBACK_STACK_DEFAULT_BLOCK_SIZE,
block_allocator := context.allocator,
location := #caller_location,
) -> Allocator_Error {
assert(block_size >= size_of(Rollback_Stack_Header) + size_of(rawptr), "Rollback Stack Allocator block size is too small.", location)
when size_of(int) > 4 {
// It's impossible to specify an argument in excess when your integer
// size is insufficient; check only on platforms with big enough ints.
assert(block_size <= ROLLBACK_STACK_MAX_HEAD_BLOCK_SIZE, "Rollback Stack Allocators cannot support head blocks larger than 2 gigabytes.", location)
}
block := rb_make_block(block_size, block_allocator) or_return
stack^ = {}
stack.head = block
stack.block_size = block_size
stack.block_allocator = block_allocator
return nil
}
rollback_stack_init :: proc {
rollback_stack_init_buffered,
rollback_stack_init_dynamic,
}
rollback_stack_destroy :: proc(stack: ^Rollback_Stack) {
if stack.block_allocator.procedure != nil {
rb_free_all(stack)
free(stack.head, stack.block_allocator)
}
stack^ = {}
}
@(require_results)
rollback_stack_allocator :: proc(stack: ^Rollback_Stack) -> Allocator {
return Allocator {
data = stack,
procedure = rollback_stack_allocator_proc,
}
}
@(require_results)
rollback_stack_allocator_proc :: proc(allocator_data: rawptr, mode: Allocator_Mode,
size, alignment: int,
old_memory: rawptr, old_size: int, location := #caller_location,
) -> (result: []byte, err: Allocator_Error) {
stack := cast(^Rollback_Stack)allocator_data
switch mode {
case .Alloc, .Alloc_Non_Zeroed:
assert(size >= 0, "Size must be positive or zero.", location)
assert(is_power_of_two(cast(uintptr)alignment), "Alignment must be a power of two.", location)
result = rb_alloc(stack, size, alignment) or_return
if mode == .Alloc {
zero_slice(result)
}
case .Free:
err = rb_free(stack, old_memory)
case .Free_All:
rb_free_all(stack)
case .Resize, .Resize_Non_Zeroed:
assert(size >= 0, "Size must be positive or zero.", location)
assert(old_size >= 0, "Old size must be positive or zero.", location)
assert(is_power_of_two(cast(uintptr)alignment), "Alignment must be a power of two.", location)
result = rb_resize(stack, old_memory, old_size, size, alignment) or_return
#no_bounds_check if mode == .Resize && size > old_size {
zero_slice(result[old_size:])
}
case .Query_Features:
set := (^Allocator_Mode_Set)(old_memory)
if set != nil {
set^ = {.Alloc, .Alloc_Non_Zeroed, .Free, .Free_All, .Resize, .Resize_Non_Zeroed}
}
return nil, nil
case .Query_Info:
return nil, .Mode_Not_Implemented
}
return
}
|