1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
|
/*
Copyright 2024 Jeroen van Rijn <nom@duclavier.com>.
Made available under Odin's BSD-3 license.
List of contributors:
Matt Conte: Original C implementation, see LICENSE file in this package
Jeroen van Rijn: Source port
*/
package mem_tlsf
import "base:intrinsics"
// import "base:sanitizer"
import "base:runtime"
// log2 of number of linear subdivisions of block sizes.
// Larger values require more memory in the control structure.
// Values of 4 or 5 are typical.
TLSF_SL_INDEX_COUNT_LOG2 :: #config(TLSF_SL_INDEX_COUNT_LOG2, 5)
// All allocation sizes and addresses are aligned to 4/8 bytes
ALIGN_SIZE_LOG2 :: 3 when size_of(uintptr) == 8 else 2
// We can increase this to support larger allocation sizes,
// at the expense of more overhead in the TLSF structure
FL_INDEX_MAX :: 32 when size_of(uintptr) == 8 else 30
#assert(FL_INDEX_MAX < 36)
ALIGN_SIZE :: 1 << ALIGN_SIZE_LOG2
SL_INDEX_COUNT :: 1 << TLSF_SL_INDEX_COUNT_LOG2
FL_INDEX_SHIFT :: TLSF_SL_INDEX_COUNT_LOG2 + ALIGN_SIZE_LOG2
FL_INDEX_COUNT :: FL_INDEX_MAX - FL_INDEX_SHIFT + 1
SMALL_BLOCK_SIZE :: 1 << FL_INDEX_SHIFT
/*
We support allocations of sizes up to (1 << `FL_INDEX_MAX`) bits.
However, because we linearly subdivide the second-level lists, and
our minimum size granularity is 4 bytes, it doesn't make sense to
create first-level lists for sizes smaller than `SL_INDEX_COUNT` * 4,
or (1 << (`TLSF_SL_INDEX_COUNT_LOG2` + 2)) bytes, as there we will be
trying to split size ranges into more slots than we have available.
Instead, we calculate the minimum threshold size, and place all
blocks below that size into the 0th first-level list.
*/
// SL_INDEX_COUNT must be <= number of bits in sl_bitmap's storage tree
#assert(size_of(uint) * 8 >= SL_INDEX_COUNT)
// Ensure we've properly tuned our sizes.
#assert(ALIGN_SIZE == SMALL_BLOCK_SIZE / SL_INDEX_COUNT)
#assert(size_of(Allocator) % ALIGN_SIZE == 0)
Pool :: struct {
data: []u8 `fmt:"-"`,
allocator: runtime.Allocator,
next: ^Pool,
}
/*
Block header structure.
There are several implementation subtleties involved:
- The `prev_phys_block` field is only valid if the previous block is free.
- The `prev_phys_block` field is actually stored at the end of the
previous block. It appears at the beginning of this structure only to
simplify the implementation.
- The `next_free` / `prev_free` fields are only valid if the block is free.
*/
Block_Header :: struct {
prev_phys_block: ^Block_Header,
size: uint, // The size of this block, excluding the block header
// Next and previous free blocks.
next_free: ^Block_Header,
prev_free: ^Block_Header,
}
#assert(offset_of(Block_Header, prev_phys_block) == 0)
/*
Since block sizes are always at least a multiple of 4, the two least
significant bits of the size field are used to store the block status:
- bit 0: whether block is busy or free
- bit 1: whether previous block is busy or free
*/
BLOCK_HEADER_FREE :: uint(1 << 0)
BLOCK_HEADER_PREV_FREE :: uint(1 << 1)
/*
The size of the block header exposed to used blocks is the `size` field.
The `prev_phys_block` field is stored *inside* the previous free block.
*/
BLOCK_HEADER_OVERHEAD :: uint(size_of(uint))
POOL_OVERHEAD :: 2 * BLOCK_HEADER_OVERHEAD
INITIAL_POOL_OVERHEAD :: 48
// User data starts directly after the size field in a used block.
BLOCK_START_OFFSET :: offset_of(Block_Header, size) + size_of(Block_Header{}.size)
/*
A free block must be large enough to store its header minus the size of
the `prev_phys_block` field, and no larger than the number of addressable
bits for `FL_INDEX`.
*/
BLOCK_SIZE_MIN :: uint(size_of(Block_Header) - size_of(^Block_Header))
BLOCK_SIZE_MAX :: uint(1) << FL_INDEX_MAX
// Clear control structure and point all empty lists at the null block
@(private)
free_all :: proc(control: ^Allocator) -> (err: Error) {
// Clear internal structures
control.block_null.next_free = &control.block_null
control.block_null.prev_free = &control.block_null
control.fl_bitmap = 0
for i in 0..<FL_INDEX_COUNT {
control.sl_bitmap[i] = 0
for j in 0..<SL_INDEX_COUNT {
control.blocks[i][j] = &control.block_null
}
}
// Add backing pool(s)
for p := &control.pool; p != nil; p = p.next {
pool_add(control, p.data) or_return
}
return
}
@(private, require_results)
pool_add :: proc(control: ^Allocator, pool: []u8) -> (err: Error) {
assert(uintptr(raw_data(pool)) % ALIGN_SIZE == 0, "Added memory must be aligned")
pool_overhead := POOL_OVERHEAD
pool_bytes := align_down(len(pool) - pool_overhead, ALIGN_SIZE)
if pool_bytes < BLOCK_SIZE_MIN {
return .Backing_Buffer_Too_Small
} else if pool_bytes > BLOCK_SIZE_MAX {
return .Backing_Buffer_Too_Large
}
// Create the main free block. Offset the start of the block slightly,
// so that the `prev_phys_block` field falls outside of the pool -
// it will never be used.
block := offset_to_block_backwards(raw_data(pool), BLOCK_HEADER_OVERHEAD)
block_set_size(block, pool_bytes)
block_set_free(block)
block_set_prev_used(block)
block_insert(control, block)
// Split the block to create a zero-size sentinel block
next := block_link_next(block)
block_set_size(next, 0)
block_set_used(next)
block_set_prev_free(next)
return
}
@(private)
pool_remove :: proc(control: ^Allocator, pool: []u8) {
block := offset_to_block_backwards(raw_data(pool), BLOCK_HEADER_OVERHEAD)
assert(block_is_free(block), "Block should be free")
assert(!block_is_free(block_next(block)), "Next block should not be free")
assert(block_size(block_next(block)) == 0, "Next block size should be zero")
fl, sl := mapping_insert(block_size(block))
remove_free_block(control, block, fl, sl)
}
@(private, require_results)
alloc_bytes_non_zeroed :: proc(control: ^Allocator, size: uint, align: uint) -> (res: []byte, err: runtime.Allocator_Error) {
assert(control != nil)
adjust := adjust_request_size(size, ALIGN_SIZE)
GAP_MINIMUM :: size_of(Block_Header)
size_with_gap := adjust_request_size(adjust + align + GAP_MINIMUM, align)
aligned_size := size_with_gap if adjust != 0 && align > ALIGN_SIZE else adjust
if aligned_size == 0 && size > 0 {
return nil, .Out_Of_Memory
}
block := block_locate_free(control, aligned_size)
if block == nil {
// OOM: Couldn't find block of `aligned_size` bytes.
if control.new_pool_size > 0 && control.pool.allocator.procedure != nil {
// TLSF is configured to grow.
/*
This implementation doesn't allow for out-of-band allocations to be passed through, as it's not designed to
track those. Nor is it able to signal those allocations then need to be freed on the backing allocator,
as opposed to regular allocations handled for you when you `destroy` the TLSF instance.
So if we're asked for more than we're configured to grow by, we can fail with an OOM error early, without adding a new pool.
*/
if aligned_size > control.new_pool_size {
return nil, .Out_Of_Memory
}
// Trying to allocate a new pool of `control.new_pool_size` bytes.
new_pool_buf := runtime.make_aligned([]byte, control.new_pool_size, ALIGN_SIZE, control.pool.allocator) or_return
// Add new pool to control structure
if pool_add_err := pool_add(control, new_pool_buf); pool_add_err != .None {
delete(new_pool_buf, control.pool.allocator)
return nil, .Out_Of_Memory
}
// sanitizer.address_poison(new_pool_buf)
// Allocate a new link in the `control.pool` tracking structure.
new_pool := new_clone(Pool{
data = new_pool_buf,
allocator = control.pool.allocator,
next = nil,
}, control.pool.allocator) or_return
p := &control.pool
for p.next != nil {
p = p.next
}
p.next = new_pool
// Try again to find free block
block = block_locate_free(control, aligned_size)
if block == nil {
return nil, .Out_Of_Memory
}
} else {
// TLSF is non-growing. We're done.
return nil, .Out_Of_Memory
}
}
ptr := block_to_ptr(block)
aligned := align_ptr(ptr, align)
gap := uint(int(uintptr(aligned)) - int(uintptr(ptr)))
if gap != 0 && gap < GAP_MINIMUM {
gap_remain := GAP_MINIMUM - gap
offset := uintptr(max(gap_remain, align))
next_aligned := rawptr(uintptr(aligned) + offset)
aligned = align_ptr(next_aligned, align)
gap = uint(int(uintptr(aligned)) - int(uintptr(ptr)))
}
if gap != 0 {
assert(gap >= GAP_MINIMUM, "gap size too small")
block = block_trim_free_leading(control, block, gap)
}
return block_prepare_used(control, block, adjust)
}
@(private, require_results)
alloc_bytes :: proc(control: ^Allocator, size: uint, align: uint) -> (res: []byte, err: runtime.Allocator_Error) {
res, err = alloc_bytes_non_zeroed(control, size, align)
if err == nil {
intrinsics.mem_zero(raw_data(res), len(res))
}
return
}
@(no_sanitize_address)
free_with_size :: proc(control: ^Allocator, ptr: rawptr, size: uint) {
assert(control != nil)
// `size` is currently ignored
if ptr == nil {
return
}
block := block_from_ptr(ptr)
assert(!block_is_free(block), "block already marked as free") // double free
// sanitizer.address_poison(ptr, block.size)
block_mark_as_free(block)
block = block_merge_prev(control, block)
block = block_merge_next(control, block)
block_insert(control, block)
}
@(private, require_results)
resize :: proc(control: ^Allocator, ptr: rawptr, old_size, new_size: uint, alignment: uint) -> (res: []byte, err: runtime.Allocator_Error) {
assert(control != nil)
if ptr != nil && new_size == 0 {
free_with_size(control, ptr, old_size)
return
} else if ptr == nil {
return alloc_bytes(control, new_size, alignment)
}
block := block_from_ptr(ptr)
next := block_next(block)
curr_size := block_size(block)
combined := curr_size + block_size(next) + BLOCK_HEADER_OVERHEAD
adjust := adjust_request_size(new_size, max(ALIGN_SIZE, alignment))
assert(!block_is_free(block), "block already marked as free") // double free
min_size := min(curr_size, new_size, old_size)
if adjust > curr_size && (!block_is_free(next) || adjust > combined) {
res = alloc_bytes(control, new_size, alignment) or_return
if res != nil {
copy(res, ([^]byte)(ptr)[:min_size])
free_with_size(control, ptr, curr_size)
}
return
}
if adjust > curr_size {
_ = block_merge_next(control, block)
block_mark_as_used(block)
}
block_trim_used(control, block, adjust)
res = ([^]byte)(ptr)[:new_size]
// sanitizer.address_unpoison(res)
if min_size < new_size {
to_zero := ([^]byte)(ptr)[min_size:new_size]
runtime.mem_zero(raw_data(to_zero), len(to_zero))
}
return
}
@(private, require_results)
resize_non_zeroed :: proc(control: ^Allocator, ptr: rawptr, old_size, new_size: uint, alignment: uint) -> (res: []byte, err: runtime.Allocator_Error) {
assert(control != nil)
if ptr != nil && new_size == 0 {
free_with_size(control, ptr, old_size)
return
} else if ptr == nil {
return alloc_bytes_non_zeroed(control, new_size, alignment)
}
block := block_from_ptr(ptr)
next := block_next(block)
curr_size := block_size(block)
combined := curr_size + block_size(next) + BLOCK_HEADER_OVERHEAD
adjust := adjust_request_size(new_size, max(ALIGN_SIZE, alignment))
assert(!block_is_free(block), "block already marked as free") // double free
min_size := min(curr_size, new_size, old_size)
if adjust > curr_size && (!block_is_free(next) || adjust > combined) {
res = alloc_bytes_non_zeroed(control, new_size, alignment) or_return
if res != nil {
copy(res, ([^]byte)(ptr)[:min_size])
free_with_size(control, ptr, old_size)
}
return
}
if adjust > curr_size {
_ = block_merge_next(control, block)
block_mark_as_used(block)
}
block_trim_used(control, block, adjust)
res = ([^]byte)(ptr)[:new_size]
return
}
/*
TLSF achieves O(1) cost for `alloc` and `free` operations by limiting
the search for a free block to a free list of guaranteed size
adequate to fulfill the request, combined with efficient free list
queries using bitmasks and architecture-specific bit-manipulation
routines.
NOTE: TLSF spec relies on ffs/fls returning a value in the range 0..31.
*/
@(private, require_results, no_sanitize_address)
block_size :: proc "contextless" (block: ^Block_Header) -> (size: uint) {
return block.size &~ (BLOCK_HEADER_FREE | BLOCK_HEADER_PREV_FREE)
}
@(private, no_sanitize_address)
block_set_size :: proc "contextless" (block: ^Block_Header, size: uint) {
old_size := block.size
block.size = size | (old_size & (BLOCK_HEADER_FREE | BLOCK_HEADER_PREV_FREE))
}
@(private, require_results, no_sanitize_address)
block_is_last :: proc "contextless" (block: ^Block_Header) -> (is_last: bool) {
return block_size(block) == 0
}
@(private, require_results, no_sanitize_address)
block_is_free :: proc "contextless" (block: ^Block_Header) -> (is_free: bool) {
return (block.size & BLOCK_HEADER_FREE) == BLOCK_HEADER_FREE
}
@(private, no_sanitize_address)
block_set_free :: proc "contextless" (block: ^Block_Header) {
block.size |= BLOCK_HEADER_FREE
}
@(private, no_sanitize_address)
block_set_used :: proc "contextless" (block: ^Block_Header) {
block.size &~= BLOCK_HEADER_FREE
}
@(private, require_results, no_sanitize_address)
block_is_prev_free :: proc "contextless" (block: ^Block_Header) -> (is_prev_free: bool) {
return (block.size & BLOCK_HEADER_PREV_FREE) == BLOCK_HEADER_PREV_FREE
}
@(private, no_sanitize_address)
block_set_prev_free :: proc "contextless" (block: ^Block_Header) {
block.size |= BLOCK_HEADER_PREV_FREE
}
@(private, no_sanitize_address)
block_set_prev_used :: proc "contextless" (block: ^Block_Header) {
block.size &~= BLOCK_HEADER_PREV_FREE
}
@(private, require_results, no_sanitize_address)
block_from_ptr :: proc(ptr: rawptr) -> (block_ptr: ^Block_Header) {
return (^Block_Header)(uintptr(ptr) - BLOCK_START_OFFSET)
}
@(private, require_results, no_sanitize_address)
block_to_ptr :: proc(block: ^Block_Header) -> (ptr: rawptr) {
return rawptr(uintptr(block) + BLOCK_START_OFFSET)
}
// Return location of next block after block of given size.
@(private, require_results, no_sanitize_address)
offset_to_block :: proc(ptr: rawptr, size: uint) -> (block: ^Block_Header) {
return (^Block_Header)(uintptr(ptr) + uintptr(size))
}
@(private, require_results, no_sanitize_address)
offset_to_block_backwards :: proc(ptr: rawptr, size: uint) -> (block: ^Block_Header) {
return (^Block_Header)(uintptr(ptr) - uintptr(size))
}
// Return location of previous block.
@(private, require_results, no_sanitize_address)
block_prev :: proc(block: ^Block_Header) -> (prev: ^Block_Header) {
assert(block_is_prev_free(block), "previous block must be free")
return block.prev_phys_block
}
// Return location of next existing block.
@(private, require_results, no_sanitize_address)
block_next :: proc(block: ^Block_Header) -> (next: ^Block_Header) {
return offset_to_block(block_to_ptr(block), block_size(block) - BLOCK_HEADER_OVERHEAD)
}
// Link a new block with its physical neighbor, return the neighbor.
@(private, require_results, no_sanitize_address)
block_link_next :: proc(block: ^Block_Header) -> (next: ^Block_Header) {
next = block_next(block)
next.prev_phys_block = block
return
}
@(private, no_sanitize_address)
block_mark_as_free :: proc(block: ^Block_Header) {
// Link the block to the next block, first.
next := block_link_next(block)
block_set_prev_free(next)
block_set_free(block)
}
@(private, no_sanitize_address)
block_mark_as_used :: proc(block: ^Block_Header) {
next := block_next(block)
block_set_prev_used(next)
block_set_used(block)
}
@(private, require_results)
align_up :: proc(x, align: uint) -> (aligned: uint) {
assert(0 == (align & (align - 1)), "must align to a power of two")
return (x + (align - 1)) &~ (align - 1)
}
@(private, require_results)
align_down :: proc(x, align: uint) -> (aligned: uint) {
assert(0 == (align & (align - 1)), "must align to a power of two")
return x - (x & (align - 1))
}
@(private, require_results)
align_ptr :: proc(ptr: rawptr, align: uint) -> (aligned: rawptr) {
assert(0 == (align & (align - 1)), "must align to a power of two")
align_mask := uintptr(align) - 1
_ptr := uintptr(ptr)
_aligned := (_ptr + align_mask) &~ (align_mask)
return rawptr(_aligned)
}
// Adjust an allocation size to be aligned to word size, and no smaller than internal minimum.
@(private, require_results)
adjust_request_size :: proc(size, align: uint) -> (adjusted: uint) {
if size == 0 {
return 0
}
// aligned size must not exceed `BLOCK_SIZE_MAX`, or we'll go out of bounds on `sl_bitmap`.
if aligned := align_up(size, align); aligned < BLOCK_SIZE_MAX {
adjusted = max(aligned, BLOCK_SIZE_MIN)
}
return
}
// Adjust an allocation size to be aligned to word size, and no smaller than internal minimum.
@(private, require_results)
adjust_request_size_with_err :: proc(size, align: uint) -> (adjusted: uint, err: runtime.Allocator_Error) {
if size == 0 {
return 0, nil
}
// aligned size must not exceed `BLOCK_SIZE_MAX`, or we'll go out of bounds on `sl_bitmap`.
if aligned := align_up(size, align); aligned < BLOCK_SIZE_MAX {
adjusted = min(aligned, BLOCK_SIZE_MAX)
} else {
err = .Out_Of_Memory
}
return
}
// TLSF utility functions. In most cases these are direct translations of
// the documentation in the research paper.
@(optimization_mode="favor_size", private, require_results)
mapping_insert :: proc(size: uint) -> (fl, sl: i32) {
if size < SMALL_BLOCK_SIZE {
// Store small blocks in first list.
sl = i32(size) / (SMALL_BLOCK_SIZE / SL_INDEX_COUNT)
} else {
fl = fls_uint(size)
sl = i32(size >> (uint(fl) - TLSF_SL_INDEX_COUNT_LOG2)) ~ (1 << TLSF_SL_INDEX_COUNT_LOG2)
fl -= (FL_INDEX_SHIFT - 1)
}
return
}
@(optimization_mode="favor_size", private, require_results)
mapping_round :: #force_inline proc(size: uint) -> (rounded: uint) {
rounded = size
if size >= SMALL_BLOCK_SIZE {
round := uint(1 << (uint(fls_uint(size) - TLSF_SL_INDEX_COUNT_LOG2))) - 1
rounded += round
}
return
}
// This version rounds up to the next block size (for allocations)
@(optimization_mode="favor_size", private, require_results)
mapping_search :: proc(size: uint) -> (fl, sl: i32) {
return mapping_insert(mapping_round(size))
}
@(private, require_results, no_sanitize_address)
search_suitable_block :: proc(control: ^Allocator, fli, sli: ^i32) -> (block: ^Block_Header) {
// First, search for a block in the list associated with the given fl/sl index.
fl := fli^; sl := sli^
sl_map := control.sl_bitmap[fli^] & (~u32(0) << uint(sl))
if sl_map == 0 {
// No block exists. Search in the next largest first-level list.
fl_map := control.fl_bitmap & (~u32(0) << uint(fl + 1))
if fl_map == 0 {
// No free blocks available, memory has been exhausted.
return {}
}
fl = ffs(fl_map)
fli^ = fl
sl_map = control.sl_bitmap[fl]
}
assert(sl_map != 0, "internal error - second level bitmap is null")
sl = ffs(sl_map)
sli^ = sl
// Return the first block in the free list.
return control.blocks[fl][sl]
}
// Remove a free block from the free list.
@(private, no_sanitize_address)
remove_free_block :: proc(control: ^Allocator, block: ^Block_Header, fl: i32, sl: i32) {
prev := block.prev_free
next := block.next_free
assert(prev != nil, "prev_free can not be nil")
assert(next != nil, "next_free can not be nil")
next.prev_free = prev
prev.next_free = next
// If this block is the head of the free list, set new head.
if control.blocks[fl][sl] == block {
control.blocks[fl][sl] = next
// If the new head is nil, clear the bitmap
if next == &control.block_null {
control.sl_bitmap[fl] &~= (u32(1) << uint(sl))
// If the second bitmap is now empty, clear the fl bitmap
if control.sl_bitmap[fl] == 0 {
control.fl_bitmap &~= (u32(1) << uint(fl))
}
}
}
}
// Insert a free block into the free block list.
@(private, no_sanitize_address)
insert_free_block :: proc(control: ^Allocator, block: ^Block_Header, fl: i32, sl: i32) {
current := control.blocks[fl][sl]
assert(current != nil, "free lists cannot have a nil entry")
assert(block != nil, "cannot insert a nil entry into the free list")
block.next_free = current
block.prev_free = &control.block_null
current.prev_free = block
assert(block_to_ptr(block) == align_ptr(block_to_ptr(block), ALIGN_SIZE), "block not properly aligned")
// Insert the new block at the head of the list, and mark the first- and second-level bitmaps appropriately.
control.blocks[fl][sl] = block
control.fl_bitmap |= (u32(1) << uint(fl))
control.sl_bitmap[fl] |= (u32(1) << uint(sl))
}
// Remove a given block from the free list.
@(private, no_sanitize_address)
block_remove :: proc(control: ^Allocator, block: ^Block_Header) {
fl, sl := mapping_insert(block_size(block))
remove_free_block(control, block, fl, sl)
}
// Insert a given block into the free list.
@(private, no_sanitize_address)
block_insert :: proc(control: ^Allocator, block: ^Block_Header) {
fl, sl := mapping_insert(block_size(block))
insert_free_block(control, block, fl, sl)
}
@(private, require_results, no_sanitize_address)
block_can_split :: proc(block: ^Block_Header, size: uint) -> (can_split: bool) {
return block_size(block) >= size_of(Block_Header) + size
}
// Split a block into two, the second of which is free.
@(private, require_results, no_sanitize_address)
block_split :: proc(block: ^Block_Header, size: uint) -> (remaining: ^Block_Header) {
// Calculate the amount of space left in the remaining block.
remaining = offset_to_block(block_to_ptr(block), size - BLOCK_HEADER_OVERHEAD)
remain_size := block_size(block) - (size + BLOCK_HEADER_OVERHEAD)
assert(block_to_ptr(remaining) == align_ptr(block_to_ptr(remaining), ALIGN_SIZE),
"remaining block not aligned properly")
assert(block_size(block) == remain_size + size + BLOCK_HEADER_OVERHEAD)
block_set_size(remaining, remain_size)
assert(block_size(remaining) >= BLOCK_SIZE_MIN, "block split with invalid size")
block_set_size(block, size)
block_mark_as_free(remaining)
return remaining
}
// Absorb a free block's storage into an adjacent previous free block.
@(private, require_results, no_sanitize_address)
block_absorb :: proc(prev: ^Block_Header, block: ^Block_Header) -> (absorbed: ^Block_Header) {
assert(!block_is_last(prev), "previous block can't be last")
// Note: Leaves flags untouched.
prev.size += block_size(block) + BLOCK_HEADER_OVERHEAD
_ = block_link_next(prev)
return prev
}
// Merge a just-freed block with an adjacent previous free block.
@(private, require_results, no_sanitize_address)
block_merge_prev :: proc(control: ^Allocator, block: ^Block_Header) -> (merged: ^Block_Header) {
merged = block
if (block_is_prev_free(block)) {
prev := block_prev(block)
assert(prev != nil, "prev physical block can't be nil")
assert(block_is_free(prev), "prev block is not free though marked as such")
block_remove(control, prev)
merged = block_absorb(prev, block)
}
return merged
}
// Merge a just-freed block with an adjacent free block.
@(private, require_results, no_sanitize_address)
block_merge_next :: proc(control: ^Allocator, block: ^Block_Header) -> (merged: ^Block_Header) {
merged = block
next := block_next(block)
assert(next != nil, "next physical block can't be nil")
if (block_is_free(next)) {
assert(!block_is_last(block), "previous block can't be last")
block_remove(control, next)
merged = block_absorb(block, next)
}
return merged
}
// Trim any trailing block space off the end of a free block, return to pool.
@(private, no_sanitize_address)
block_trim_free :: proc(control: ^Allocator, block: ^Block_Header, size: uint) {
assert(block_is_free(block), "block must be free")
if (block_can_split(block, size)) {
remaining_block := block_split(block, size)
_ = block_link_next(block)
block_set_prev_free(remaining_block)
block_insert(control, remaining_block)
}
}
// Trim any trailing block space off the end of a used block, return to pool.
@(private, no_sanitize_address)
block_trim_used :: proc(control: ^Allocator, block: ^Block_Header, size: uint) {
assert(!block_is_free(block), "Block must be used")
if (block_can_split(block, size)) {
// If the next block is free, we must coalesce.
remaining_block := block_split(block, size)
block_set_prev_used(remaining_block)
remaining_block = block_merge_next(control, remaining_block)
block_insert(control, remaining_block)
}
}
// Trim leading block space, return to pool.
@(private, require_results, no_sanitize_address)
block_trim_free_leading :: proc(control: ^Allocator, block: ^Block_Header, size: uint) -> (remaining: ^Block_Header) {
remaining = block
if block_can_split(block, size) {
// We want the 2nd block.
remaining = block_split(block, size - BLOCK_HEADER_OVERHEAD)
block_set_prev_free(remaining)
_ = block_link_next(block)
block_insert(control, block)
}
return remaining
}
@(private, require_results, no_sanitize_address)
block_locate_free :: proc(control: ^Allocator, size: uint) -> (block: ^Block_Header) {
fl, sl: i32
if size != 0 {
fl, sl = mapping_search(size)
/*
`mapping_search` can futz with the size, so for excessively large sizes it can sometimes wind up
with indices that are off the end of the block array. So, we protect against that here,
since this is the only call site of `mapping_search`. Note that we don't need to check `sl`,
as it comes from a modulo operation that guarantees it's always in range.
*/
if fl < FL_INDEX_COUNT {
block = search_suitable_block(control, &fl, &sl)
}
}
if block != nil {
assert(block_size(block) >= size)
remove_free_block(control, block, fl, sl)
}
return block
}
@(private, require_results, no_sanitize_address)
block_prepare_used :: proc(control: ^Allocator, block: ^Block_Header, size: uint) -> (res: []byte, err: runtime.Allocator_Error) {
if block != nil {
assert(size != 0, "Size must be non-zero")
block_trim_free(control, block, size)
block_mark_as_used(block)
res = ([^]byte)(block_to_ptr(block))[:size]
// sanitizer.address_unpoison(res)
}
return
}
|