1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
|
#+build windows
package net
/*
Package net implements cross-platform Berkeley Sockets, DNS resolution and associated procedures.
For other protocols and their features, see subdirectories of this package.
*/
/*
Copyright 2022 Tetralux <tetraluxonpc@gmail.com>
Copyright 2022 Colin Davidson <colrdavidson@gmail.com>
Copyright 2022 Jeroen van Rijn <nom@duclavier.com>.
Copyright 2024 Feoramund <rune@swevencraft.org>.
Made available under Odin's BSD-3 license.
List of contributors:
Tetralux: Initial implementation
Colin Davidson: Linux platform code, OSX platform code, Odin-native DNS resolver
Jeroen van Rijn: Cross platform unification, code style, documentation
Feoramund: FreeBSD platform code
*/
import sys "core:sys/windows"
import strings "core:strings"
_enumerate_interfaces :: proc(allocator := context.allocator) -> (interfaces: []Network_Interface, err: Interfaces_Error) {
context.allocator = allocator
buf: []u8
defer delete(buf)
buf_size: u32
res: u32
gaa: for _ in 1..=MAX_INTERFACE_ENUMERATION_TRIES {
res = sys.get_adapters_addresses(
.Unspecified, // Return both IPv4 and IPv6 adapters.
sys.GAA_Flags{
.Include_Prefix, // (XP SP1+) Return a list of IP address prefixes on this adapter. When this flag is set, IP address prefixes are returned for both IPv6 and IPv4 addresses.
.Include_Gateways, // (Vista+) Return the addresses of default gateways.
.Include_Tunnel_Binding_Order, // (Vista+) Return the adapter addresses sorted in tunnel binding order.
},
nil, // Reserved
(^sys.IP_Adapter_Addresses)(raw_data(buf)),
&buf_size,
)
switch res {
case 111: // ERROR_BUFFER_OVERFLOW:
delete(buf)
buf = make([]u8, buf_size)
case 0:
break gaa
case:
set_last_platform_error(i32(res))
return {}, .Unknown
}
}
if res != 0 {
return {}, .Unable_To_Enumerate_Network_Interfaces
}
_interfaces := make([dynamic]Network_Interface, 0, allocator)
for adapter := (^sys.IP_Adapter_Addresses)(raw_data(buf)); adapter != nil; adapter = adapter.Next {
friendly_name, err1 := sys.wstring_to_utf8(sys.wstring(adapter.FriendlyName), 256, allocator)
if err1 != nil { return {}, .Allocation_Failure }
description, err2 := sys.wstring_to_utf8(sys.wstring(adapter.Description), 256, allocator)
if err2 != nil { return {}, .Allocation_Failure }
dns_suffix, err3 := sys.wstring_to_utf8(sys.wstring(adapter.DnsSuffix), 256, allocator)
if err3 != nil { return {}, .Allocation_Failure }
interface := Network_Interface{
adapter_name = strings.clone(string(adapter.AdapterName)),
friendly_name = friendly_name,
description = description,
dns_suffix = dns_suffix,
mtu = adapter.MTU,
link = {
transmit_speed = adapter.TransmitLinkSpeed,
receive_speed = adapter.ReceiveLinkSpeed,
},
}
if adapter.PhysicalAddressLength > 0 && adapter.PhysicalAddressLength <= len(adapter.PhysicalAddress) {
interface.physical_address = physical_address_to_string(adapter.PhysicalAddress[:adapter.PhysicalAddressLength])
}
for u_addr := (^sys.IP_ADAPTER_UNICAST_ADDRESS_LH)(adapter.FirstUnicastAddress); u_addr != nil; u_addr = u_addr.Next {
win_addr := parse_socket_address(u_addr.Address)
lease := Lease{
address = win_addr.address,
origin = {
prefix = Prefix_Origin(u_addr.PrefixOrigin),
suffix = Suffix_Origin(u_addr.SuffixOrigin),
},
lifetime = {
valid = u_addr.ValidLifetime,
preferred = u_addr.PreferredLifetime,
lease = u_addr.LeaseLifetime,
},
address_duplication = Address_Duplication(u_addr.DadState),
}
append(&interface.unicast, lease)
}
for a_addr := (^sys.IP_ADAPTER_ANYCAST_ADDRESS_XP)(adapter.FirstAnycastAddress); a_addr != nil; a_addr = a_addr.Next {
addr := parse_socket_address(a_addr.Address)
append(&interface.anycast, addr.address)
}
for m_addr := (^sys.IP_ADAPTER_MULTICAST_ADDRESS_XP)(adapter.FirstMulticastAddress); m_addr != nil; m_addr = m_addr.Next {
addr := parse_socket_address(m_addr.Address)
append(&interface.multicast, addr.address)
}
for g_addr := (^sys.IP_ADAPTER_GATEWAY_ADDRESS_LH)(adapter.FirstGatewayAddress); g_addr != nil; g_addr = g_addr.Next {
addr := parse_socket_address(g_addr.Address)
append(&interface.gateways, addr.address)
}
interface.dhcp_v4 = parse_socket_address(adapter.Dhcpv4Server).address
interface.dhcp_v6 = parse_socket_address(adapter.Dhcpv6Server).address
switch adapter.OperStatus {
case .Up: interface.link.state = {.Up}
case .Down: interface.link.state = {.Down}
case .Testing: interface.link.state = {.Testing}
case .Dormant: interface.link.state = {.Dormant}
case .NotPresent: interface.link.state = {.Not_Present}
case .LowerLayerDown: interface.link.state = {.Lower_Layer_Down}
case .Unknown: fallthrough
case: interface.link.state = {}
}
interface.tunnel_type = Tunnel_Type(adapter.TunnelType)
append(&_interfaces, interface)
}
return _interfaces[:], {}
}
/*
Interpret SOCKET_ADDRESS as an Address
*/
parse_socket_address :: proc(addr_in: sys.SOCKET_ADDRESS) -> (addr: Endpoint) {
if addr_in.lpSockaddr == nil {
return // Empty or invalid address type
}
sock := addr_in.lpSockaddr^
switch sock.sa_family {
case u16(sys.AF_INET):
win_addr := cast(^sys.sockaddr_in)addr_in.lpSockaddr
port := int(win_addr.sin_port)
return Endpoint {
address = IP4_Address(transmute([4]byte)win_addr.sin_addr),
port = port,
}
case u16(sys.AF_INET6):
win_addr := cast(^sys.sockaddr_in6)addr_in.lpSockaddr
port := int(win_addr.sin6_port)
return Endpoint {
address = IP6_Address(transmute([8]u16be)win_addr.sin6_addr),
port = port,
}
case: return // Empty or invalid address type
}
unreachable()
}
|