aboutsummaryrefslogtreecommitdiff
path: root/core/net/socket_linux.odin
blob: b7141e8bab04c6883b60bab375814791140b5d66 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
package net
// +build linux

/*
	Package net implements cross-platform Berkeley Sockets, DNS resolution and associated procedures.
	For other protocols and their features, see subdirectories of this package.
*/

/*
	Copyright 2022 Tetralux        <tetraluxonpc@gmail.com>
	Copyright 2022 Colin Davidson  <colrdavidson@gmail.com>
	Copyright 2022 Jeroen van Rijn <nom@duclavier.com>.
	Made available under Odin's BSD-3 license.

	List of contributors:
		Tetralux:        Initial implementation
		Colin Davidson:  Linux platform code, OSX platform code, Odin-native DNS resolver
		Jeroen van Rijn: Cross platform unification, code style, documentation
*/

import "core:c"
import "core:os"
import "core:time"

Socket_Option :: enum c.int {
	Reuse_Address             = c.int(os.SO_REUSEADDR),
	Keep_Alive                = c.int(os.SO_KEEPALIVE),
	Out_Of_Bounds_Data_Inline = c.int(os.SO_OOBINLINE),
	TCP_Nodelay               = c.int(os.TCP_NODELAY),
	Linger                    = c.int(os.SO_LINGER),
	Receive_Buffer_Size       = c.int(os.SO_RCVBUF),
	Send_Buffer_Size          = c.int(os.SO_SNDBUF),
	Receive_Timeout           = c.int(os.SO_RCVTIMEO_NEW),
	Send_Timeout              = c.int(os.SO_SNDTIMEO_NEW),
}

@(private)
_create_socket :: proc(family: Address_Family, protocol: Socket_Protocol) -> (socket: Any_Socket, err: Network_Error) {
	c_type, c_protocol, c_family: int

	switch family {
	case .IP4:  c_family = os.AF_INET
	case .IP6:  c_family = os.AF_INET6
	case:
		unreachable()
	}

	switch protocol {
	case .TCP:  c_type = os.SOCK_STREAM; c_protocol = os.IPPROTO_TCP
	case .UDP:  c_type = os.SOCK_DGRAM;  c_protocol = os.IPPROTO_UDP
	case:
		unreachable()
	}

	sock, ok := os.socket(c_family, c_type, c_protocol)
	if ok != os.ERROR_NONE {
		err = Create_Socket_Error(ok)
		return
	}

	switch protocol {
	case .TCP:  return TCP_Socket(sock), nil
	case .UDP:  return UDP_Socket(sock), nil
	case:
		unreachable()
	}
}

@(private)
_dial_tcp_from_endpoint :: proc(endpoint: Endpoint, options := default_tcp_options) -> (skt: TCP_Socket, err: Network_Error) {
	if endpoint.port == 0 {
		return 0, .Port_Required
	}

	family := family_from_endpoint(endpoint)
	sock := create_socket(family, .TCP) or_return
	skt = sock.(TCP_Socket)

	// NOTE(tetra): This is so that if we crash while the socket is open, we can
	// bypass the cooldown period, and allow the next run of the program to
	// use the same address immediately.
	_ = set_option(skt, .Reuse_Address, true)

	sockaddr := _endpoint_to_sockaddr(endpoint)
	res := os.connect(os.Socket(skt), (^os.SOCKADDR)(&sockaddr), size_of(sockaddr))
	if res != os.ERROR_NONE {
		err = Dial_Error(res)
		return
	}

	if options.no_delay {
		_ = _set_option(sock, .TCP_Nodelay, true) // NOTE(tetra): Not vital to succeed; error ignored
	}

	return
}

@(private)
_bind :: proc(skt: Any_Socket, ep: Endpoint) -> (err: Network_Error) {
	sockaddr := _endpoint_to_sockaddr(ep)
	s := any_socket_to_socket(skt)
	res := os.bind(os.Socket(s), (^os.SOCKADDR)(&sockaddr), size_of(sockaddr))
	if res != os.ERROR_NONE {
		err = Bind_Error(res)
	}
	return
}

@(private)
_listen_tcp :: proc(interface_endpoint: Endpoint, backlog := 1000) -> (skt: TCP_Socket, err: Network_Error) {
	assert(backlog > 0 && i32(backlog) < max(i32))

	family := family_from_endpoint(interface_endpoint)
	sock := create_socket(family, .TCP) or_return
	skt = sock.(TCP_Socket)

	// NOTE(tetra): This is so that if we crash while the socket is open, we can
	// bypass the cooldown period, and allow the next run of the program to
	// use the same address immediately.
	//
	// TODO(tetra, 2022-02-15): Confirm that this doesn't mean other processes can hijack the address!
	set_option(sock, .Reuse_Address, true) or_return

	bind(sock, interface_endpoint) or_return

	res := os.listen(os.Socket(skt), backlog)
	if res != os.ERROR_NONE {
		err = Listen_Error(res)
		return
	}

	return
}

@(private)
_accept_tcp :: proc(sock: TCP_Socket, options := default_tcp_options) -> (client: TCP_Socket, source: Endpoint, err: Network_Error) {
	sockaddr: os.SOCKADDR_STORAGE_LH
	sockaddrlen := c.int(size_of(sockaddr))

	client_sock, ok := os.accept(os.Socket(sock), cast(^os.SOCKADDR) &sockaddr, &sockaddrlen)
	if ok != os.ERROR_NONE {
		err = Accept_Error(ok)
		return
	}
	client = TCP_Socket(client_sock)
	source = _sockaddr_storage_to_endpoint(&sockaddr)
	if options.no_delay {
		_ = _set_option(client, .TCP_Nodelay, true) // NOTE(tetra): Not vital to succeed; error ignored
	}
	return
}

@(private)
_close :: proc(skt: Any_Socket) {
	s := any_socket_to_socket(skt)
	os.close(os.Handle(os.Socket(s)))
}

@(private)
_recv_tcp :: proc(skt: TCP_Socket, buf: []byte) -> (bytes_read: int, err: Network_Error) {
	if len(buf) <= 0 {
		return
	}
	res, ok := os.recv(os.Socket(skt), buf, 0)
	if ok != os.ERROR_NONE {
		err = TCP_Recv_Error(ok)
		return
	}
	return int(res), nil
}

@(private)
_recv_udp :: proc(skt: UDP_Socket, buf: []byte) -> (bytes_read: int, remote_endpoint: Endpoint, err: Network_Error) {
	if len(buf) <= 0 {
		return
	}

	from: os.SOCKADDR_STORAGE_LH = ---
	fromsize := c.int(size_of(from))

	// NOTE(tetra): On Linux, if the buffer is too small to fit the entire datagram payload, the rest is silently discarded,
	// and no error is returned.
	// However, if you pass MSG_TRUNC here, 'res' will be the size of the incoming message, rather than how much was read.
	// We can use this fact to detect this condition and return .Buffer_Too_Small.
	res, ok := os.recvfrom(os.Socket(skt), buf, os.MSG_TRUNC, cast(^os.SOCKADDR) &from, &fromsize)
	if ok != os.ERROR_NONE {
		err = UDP_Recv_Error(ok)
		return
	}

	bytes_read = int(res)
	remote_endpoint = _sockaddr_storage_to_endpoint(&from)

	if bytes_read > len(buf) {
		// NOTE(tetra): The buffer has been filled, with a partial message.
		bytes_read = len(buf)
		err = .Buffer_Too_Small
	}

	return
}

@(private)
_send_tcp :: proc(skt: TCP_Socket, buf: []byte) -> (bytes_written: int, err: Network_Error) {
	for bytes_written < len(buf) {
		limit := min(int(max(i32)), len(buf) - bytes_written)
		remaining := buf[bytes_written:][:limit]
		res, ok := os.send(os.Socket(skt), remaining, 0)
		if ok != os.ERROR_NONE {
			err = TCP_Send_Error(ok)
			return
		}
		bytes_written += int(res)
	}
	return
}

@(private)
_send_udp :: proc(skt: UDP_Socket, buf: []byte, to: Endpoint) -> (bytes_written: int, err: Network_Error) {
	toaddr := _endpoint_to_sockaddr(to)
	res, os_err := os.sendto(os.Socket(skt), buf, 0, cast(^os.SOCKADDR) &toaddr, size_of(toaddr))
	if os_err != os.ERROR_NONE {
		err = UDP_Send_Error(os_err)
		return
	}
	bytes_written = int(res)
	return
}

@(private)
_shutdown :: proc(skt: Any_Socket, manner: Shutdown_Manner) -> (err: Network_Error) {
	s := any_socket_to_socket(skt)
	res := os.shutdown(os.Socket(s), int(manner))
	if res != os.ERROR_NONE {
		return Shutdown_Error(res)
	}
	return
}

@(private)
_set_option :: proc(s: Any_Socket, option: Socket_Option, value: any, loc := #caller_location) -> Network_Error {
	level := os.SOL_SOCKET if option != .TCP_Nodelay else os.IPPROTO_TCP

	// NOTE(tetra, 2022-02-15): On Linux, you cannot merely give a single byte for a bool;
	//  it _has_ to be a b32.
	//  I haven't tested if you can give more than that.
	bool_value: b32
	int_value: i32
	timeval_value: os.Timeval

	ptr: rawptr
	len: os.socklen_t

	switch option {
	case
		.Reuse_Address,
		.Keep_Alive,
		.Out_Of_Bounds_Data_Inline,
		.TCP_Nodelay:
		// TODO: verify whether these are options or not on Linux
		// .Broadcast,
		// .Conditional_Accept,
		// .Dont_Linger:
			switch x in value {
			case bool, b8:
				x2 := x
				bool_value = b32((^bool)(&x2)^)
			case b16:
				bool_value = b32(x)
			case b32:
				bool_value = b32(x)
			case b64:
				bool_value = b32(x)
			case:
				panic("set_option() value must be a boolean here", loc)
			}
			ptr = &bool_value
			len = size_of(bool_value)
	case
		.Linger,
		.Send_Timeout,
		.Receive_Timeout:
			t, ok := value.(time.Duration)
			if !ok do panic("set_option() value must be a time.Duration here", loc)

			micros := i64(time.duration_microseconds(t))
			timeval_value.microseconds = int(micros % 1e6)
			timeval_value.seconds = (micros - i64(timeval_value.microseconds)) / 1e6

			ptr = &timeval_value
			len = size_of(timeval_value)
	case
		.Receive_Buffer_Size,
		.Send_Buffer_Size:
			// TODO: check for out of range values and return .Value_Out_Of_Range?
			switch i in value {
			case   i8,   u8: i2 := i; int_value = os.socklen_t((^u8)(&i2)^)
			case  i16,  u16: i2 := i; int_value = os.socklen_t((^u16)(&i2)^)
			case  i32,  u32: i2 := i; int_value = os.socklen_t((^u32)(&i2)^)
			case  i64,  u64: i2 := i; int_value = os.socklen_t((^u64)(&i2)^)
			case i128, u128: i2 := i; int_value = os.socklen_t((^u128)(&i2)^)
			case  int, uint: i2 := i; int_value = os.socklen_t((^uint)(&i2)^)
			case:
				panic("set_option() value must be an integer here", loc)
			}
			ptr = &int_value
			len = size_of(int_value)
	}

	skt := any_socket_to_socket(s)
	res := os.setsockopt(os.Socket(skt), int(level), int(option), ptr, len)
	if res != os.ERROR_NONE {
		return Socket_Option_Error(res)
	}

	return nil
}

@(private)
_set_blocking :: proc(socket: Any_Socket, should_block: bool) -> (err: Network_Error) {
	socket := any_socket_to_socket(socket)

	flags, getfl_err := os.fcntl(int(socket), os.F_GETFL, 0)
	if getfl_err != os.ERROR_NONE {
		return Set_Blocking_Error(getfl_err)
	}

	if should_block {
		flags &= ~int(os.O_NONBLOCK)
	} else {
		flags |= int(os.O_NONBLOCK)
	}

	_, setfl_err := os.fcntl(int(socket), os.F_SETFL, flags)
	if setfl_err != os.ERROR_NONE {
		return Set_Blocking_Error(setfl_err)
	}

	return nil
}

@(private)
_endpoint_to_sockaddr :: proc(ep: Endpoint) -> (sockaddr: os.SOCKADDR_STORAGE_LH) {
	switch a in ep.address {
	case IP4_Address:
		(^os.sockaddr_in)(&sockaddr)^ = os.sockaddr_in {
			sin_port = u16be(ep.port),
			sin_addr = transmute(os.in_addr) a,
			sin_family = u16(os.AF_INET),
		}
		return
	case IP6_Address:
		(^os.sockaddr_in6)(&sockaddr)^ = os.sockaddr_in6 {
			sin6_port = u16be(ep.port),
			sin6_addr = transmute(os.in6_addr) a,
			sin6_family = u16(os.AF_INET6),
		}
		return
	}
	unreachable()
}

@(private)
_sockaddr_storage_to_endpoint :: proc(native_addr: ^os.SOCKADDR_STORAGE_LH) -> (ep: Endpoint) {
	switch native_addr.ss_family {
	case u16(os.AF_INET):
		addr := cast(^os.sockaddr_in) native_addr
		port := int(addr.sin_port)
		ep = Endpoint {
			address = IP4_Address(transmute([4]byte) addr.sin_addr),
			port = port,
		}
	case u16(os.AF_INET6):
		addr := cast(^os.sockaddr_in6) native_addr
		port := int(addr.sin6_port)
		ep = Endpoint {
			address = IP6_Address(transmute([8]u16be) addr.sin6_addr),
			port = port,
		}
	case:
		panic("native_addr is neither IP4 or IP6 address")
	}
	return
}

@(private)
_sockaddr_basic_to_endpoint :: proc(native_addr: ^os.SOCKADDR) -> (ep: Endpoint) {
	switch native_addr.sa_family {
	case u16(os.AF_INET):
		addr := cast(^os.sockaddr_in) native_addr
		port := int(addr.sin_port)
		ep = Endpoint {
			address = IP4_Address(transmute([4]byte) addr.sin_addr),
			port = port,
		}
	case u16(os.AF_INET6):
		addr := cast(^os.sockaddr_in6) native_addr
		port := int(addr.sin6_port)
		ep = Endpoint {
			address = IP6_Address(transmute([8]u16be) addr.sin6_addr),
			port = port,
		}
	case:
		panic("native_addr is neither IP4 or IP6 address")
	}
	return
}