1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
|
#+private
package os
import "base:runtime"
import "base:intrinsics"
import "core:sync"
import "core:slice"
import "core:strings"
import "core:sys/linux"
import "core:sys/posix"
_ :: sync
_ :: slice
_ :: linux
_ :: posix
when ODIN_NO_CRT {
// TODO: Override the libc environment functions' weak linkage to
// allow us to interact with 3rd party code that DOES link
// to libc. Otherwise, our environment can be out of sync.
NOT_FOUND :: -1
// the environment is a 0 delimited list of <key>=<value> strings
_env: [dynamic]string
_env_mutex: sync.Recursive_Mutex
// We need to be able to figure out if the environment variable
// is contained in the original environment or not. This also
// serves as a flag to determine if we have built _env.
_org_env_begin: uintptr // atomic
_org_env_end: uintptr // guarded by _env_mutex
// Returns value + index location into _env
// or -1 if not found
_lookup :: proc(key: string) -> (value: string, idx: int) {
sync.guard(&_env_mutex)
for entry, i in _env {
if k, v := _kv_from_entry(entry); k == key {
return v, i
}
}
return "", -1
}
_lookup_env_alloc :: proc(key: string, allocator: runtime.Allocator) -> (value: string, found: bool) {
if intrinsics.atomic_load_explicit(&_org_env_begin, .Acquire) == 0 {
_build_env()
}
if v, idx := _lookup(key); idx != -1 {
found = true
value, _ = clone_string(v, allocator)
}
return
}
_lookup_env_buf :: proc(buf: []u8, key: string) -> (value: string, err: Error) {
if intrinsics.atomic_load_explicit(&_org_env_begin, .Acquire) == 0 {
_build_env()
}
if v, idx := _lookup(key); idx != -1 {
if len(buf) >= len(v) {
copy(buf, v)
return string(buf[:len(v)]), nil
}
return "", .Buffer_Full
}
return "", .Env_Var_Not_Found
}
_lookup_env :: proc{_lookup_env_alloc, _lookup_env_buf}
_set_env :: proc(key, v_new: string) -> Error {
if intrinsics.atomic_load_explicit(&_org_env_begin, .Acquire) == 0 {
_build_env()
}
sync.guard(&_env_mutex)
// all key values are stored as "key=value\x00"
kv_size := len(key) + len(v_new) + 2
if v_curr, idx := _lookup(key); idx != NOT_FOUND {
if v_curr == v_new {
return nil
}
unordered_remove(&_env, idx)
if !_is_in_org_env(v_curr) {
// We allocated this key-value. Possibly resize and
// overwrite the value only. Otherwise, treat as if it
// wasn't in the environment in the first place.
k_addr, v_addr := _kv_addr_from_val(v_curr, key)
if len(v_new) > len(v_curr) {
k_addr = ([^]u8)(runtime.heap_resize(k_addr, kv_size))
if k_addr == nil {
return .Out_Of_Memory
}
v_addr = &k_addr[len(key) + 1]
}
intrinsics.mem_copy_non_overlapping(v_addr, raw_data(v_new), len(v_new))
v_addr[len(v_new)] = 0
append(&_env, string(k_addr[:kv_size]))
return nil
}
}
k_addr := ([^]u8)(runtime.heap_alloc(kv_size))
if k_addr == nil {
return .Out_Of_Memory
}
intrinsics.mem_copy_non_overlapping(k_addr, raw_data(key), len(key))
k_addr[len(key)] = '='
val_slice := k_addr[len(key) + 1:]
intrinsics.mem_copy_non_overlapping(&val_slice[0], raw_data(v_new), len(v_new))
val_slice[len(v_new)] = 0
append(&_env, string(k_addr[:kv_size - 1]))
return nil
}
_unset_env :: proc(key: string) -> bool {
if intrinsics.atomic_load_explicit(&_org_env_begin, .Acquire) == 0 {
_build_env()
}
sync.guard(&_env_mutex)
v: string
i: int
if v, i = _lookup(key); i == -1 {
return true
}
unordered_remove(&_env, i)
if _is_in_org_env(v) {
return true
}
// if we got this far, the environment variable
// existed AND was allocated by us.
k_addr, _ := _kv_addr_from_val(v, key)
runtime.heap_free(k_addr)
return true
}
_clear_env :: proc() {
sync.guard(&_env_mutex)
for kv in _env {
if !_is_in_org_env(kv) {
runtime.heap_free(raw_data(kv))
}
}
clear(&_env)
// nothing resides in the original environment either
intrinsics.atomic_store_explicit(&_org_env_begin, ~uintptr(0), .Release)
_org_env_end = ~uintptr(0)
}
_environ :: proc(allocator: runtime.Allocator) -> (environ: []string, err: Error) {
if intrinsics.atomic_load_explicit(&_org_env_begin, .Acquire) == 0 {
_build_env()
}
sync.guard(&_env_mutex)
env := make([dynamic]string, 0, len(_env), allocator) or_return
defer if err != nil {
for e in env {
delete(e, allocator)
}
delete(env)
}
for entry in _env {
s := clone_string(entry, allocator) or_return
append(&env, s)
}
environ = env[:]
return
}
// The entire environment is stored as 0 terminated strings,
// so there is no need to clone/free individual variables
export_cstring_environment :: proc(allocator: runtime.Allocator) -> []cstring {
if intrinsics.atomic_load_explicit(&_org_env_begin, .Acquire) == 0 {
// The environment has not been modified, so we can just
// send the original environment
org_env := _get_original_env()
n: int
for ; org_env[n] != nil; n += 1 {}
return slice.clone(org_env[:n + 1], allocator)
}
sync.guard(&_env_mutex)
// NOTE: already terminated by nil pointer via + 1
env := make([]cstring, len(_env) + 1, allocator)
for entry, i in _env {
env[i] = cstring(raw_data(entry))
}
return env
}
_build_env :: proc() {
sync.guard(&_env_mutex)
if intrinsics.atomic_load_explicit(&_org_env_begin, .Acquire) != 0 {
return
}
_env = make(type_of(_env), runtime.heap_allocator())
cstring_env := _get_original_env()
intrinsics.atomic_store_explicit(&_org_env_begin, uintptr(rawptr(cstring_env[0])), .Release)
for i := 0; cstring_env[i] != nil; i += 1 {
bytes := ([^]u8)(cstring_env[i])
n := len(cstring_env[i])
_org_env_end = uintptr(&bytes[n])
append(&_env, string(bytes[:n]))
}
}
_get_original_env :: #force_inline proc() -> [^]cstring {
// essentially &argv[argc] which should be a nil pointer!
#no_bounds_check env: [^]cstring = &runtime.args__[len(runtime.args__)]
assert(env[0] == nil)
return &env[1]
}
_kv_from_entry :: #force_inline proc(entry: string) -> (k, v: string) {
eq_idx := strings.index_byte(entry, '=')
if eq_idx == -1 {
return entry, ""
}
return entry[:eq_idx], entry[eq_idx + 1:]
}
_kv_addr_from_val :: #force_inline proc(val: string, key: string) -> ([^]u8, [^]u8) {
v_addr := raw_data(val)
k_addr := ([^]u8)(&v_addr[-(len(key) + 1)])
return k_addr, v_addr
}
_is_in_org_env :: #force_inline proc(env_data: string) -> bool {
addr := uintptr(raw_data(env_data))
return addr >= intrinsics.atomic_load_explicit(&_org_env_begin, .Acquire) && addr < _org_env_end
}
} else {
_lookup_env_alloc :: proc(key: string, allocator: runtime.Allocator) -> (value: string, found: bool) {
if key == "" {
return
}
temp_allocator := TEMP_ALLOCATOR_GUARD({ allocator })
ckey := strings.clone_to_cstring(key, temp_allocator)
cval := posix.getenv(ckey)
if cval == nil {
return
}
found = true
value = strings.clone(string(cval), allocator) // NOTE(laytan): what if allocation fails?
return
}
_lookup_env_buf :: proc(buf: []u8, key: string) -> (value: string, error: Error) {
if key == "" {
return
}
if len(key) + 1 > len(buf) {
return "", .Buffer_Full
} else {
copy(buf, key)
buf[len(key)] = 0
}
cval := posix.getenv(cstring(raw_data(buf)))
if cval == nil {
return
}
if value = string(cval); value == "" {
return "", .Env_Var_Not_Found
} else {
if len(value) > len(buf) {
return "", .Buffer_Full
} else {
copy(buf, value)
return string(buf[:len(value)]), nil
}
}
}
_lookup_env :: proc{_lookup_env_alloc, _lookup_env_buf}
_set_env :: proc(key, value: string) -> (err: Error) {
temp_allocator := TEMP_ALLOCATOR_GUARD({})
ckey := strings.clone_to_cstring(key, temp_allocator) or_return
cval := strings.clone_to_cstring(value, temp_allocator) or_return
if posix.setenv(ckey, cval, true) != nil {
posix_errno := posix.errno()
linux_errno := cast(linux.Errno)(cast(int)posix_errno)
err = _get_platform_error(linux_errno)
}
return
}
_unset_env :: proc(key: string) -> (ok: bool) {
temp_allocator := TEMP_ALLOCATOR_GUARD({})
ckey := strings.clone_to_cstring(key, temp_allocator)
ok = posix.unsetenv(ckey) == .OK
return
}
// NOTE(laytan): clearing the env is weird, why would you ever do that?
_clear_env :: proc() {
for entry := posix.environ[0]; entry != nil; entry = posix.environ[0] {
key := strings.truncate_to_byte(string(entry), '=')
_unset_env(key)
}
}
_environ :: proc(allocator: runtime.Allocator) -> (environ: []string, err: Error) {
n := 0
for entry := posix.environ[0]; entry != nil; n, entry = n+1, posix.environ[n] {}
r := make([dynamic]string, 0, n, allocator) or_return
defer if err != nil {
for e in r {
delete(e, allocator)
}
delete(r)
}
for i, entry := 0, posix.environ[0]; entry != nil; i, entry = i+1, posix.environ[i] {
append(&r, strings.clone(string(entry), allocator) or_return)
}
environ = r[:]
return
}
export_cstring_environment :: proc(allocator: runtime.Allocator) -> []cstring {
env := make([dynamic]cstring, allocator)
for i, entry := 0, posix.environ[0]; entry != nil; i, entry = i+1, posix.environ[i] {
append(&env, entry)
}
append(&env, nil)
return env[:]
}
}
|