1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
|
package slice
Ordering :: enum {
Less = -1,
Equal = 0,
Greater = +1,
}
@(require_results)
cmp :: proc(a, b: $E) -> Ordering where ORD(E) {
switch {
case a < b:
return .Less
case a > b:
return .Greater
}
return .Equal
}
@(require_results)
cmp_proc :: proc($E: typeid) -> (proc(E, E) -> Ordering) where ORD(E) {
return proc(a, b: E) -> Ordering {
switch {
case a < b:
return .Less
case a > b:
return .Greater
}
return .Equal
}
}
// sort sorts a slice
// This sort is not guaranteed to be stable
sort :: proc(data: $T/[]$E) where ORD(E) {
when size_of(E) != 0 {
if n := len(data); n > 1 {
_quick_sort_general(data, 0, n, _max_depth(n), struct{}{}, .Ordered)
}
}
}
sort_by_indices :: proc{ sort_by_indices_allocate, _sort_by_indices}
sort_by_indices_allocate :: proc(data: $T/[]$E, indices: []int, allocator := context.allocator) -> (sorted: T) {
assert(len(data) == len(indices))
sorted = make(T, len(data), allocator)
for v, i in indices {
sorted[i] = data[v]
}
return
}
_sort_by_indices :: proc(data, sorted: $T/[]$E, indices: []int) {
assert(len(data) == len(indices))
assert(len(data) == len(sorted))
for v, i in indices {
sorted[i] = data[v]
}
}
sort_by_indices_overwrite :: proc(data: $T/[]$E, indices: []int) {
assert(len(data) == len(indices))
temp := make([]E, len(data), context.allocator)
defer delete(temp)
for v, i in indices {
temp[i] = data[v]
}
swap_with_slice(data, temp)
}
// sort sorts a slice and returns a slice of the original indices
// This sort is not guaranteed to be stable
sort_with_indices :: proc(data: $T/[]$E, allocator := context.allocator) -> (indices: []int) where ORD(E) {
indices = make([]int, len(data), allocator)
when size_of(E) != 0 {
if n := len(data); n > 1 {
for _, idx in indices {
indices[idx] = idx
}
_quick_sort_general_with_indices(data, indices, 0, n, _max_depth(n), struct{}{}, .Ordered)
}
return indices
}
return indices
}
// sort_by sorts a slice with a given procedure to test whether two values are ordered "i < j"
// This sort is not guaranteed to be stable
sort_by :: proc(data: $T/[]$E, less: proc(i, j: E) -> bool) {
when size_of(E) != 0 {
if n := len(data); n > 1 {
_quick_sort_general(data, 0, n, _max_depth(n), less, .Less)
}
}
}
// sort_by sorts a slice with a given procedure to test whether two values are ordered "i < j"
// This sort is not guaranteed to be stable
sort_by_with_indices :: proc(data: $T/[]$E, less: proc(i, j: E) -> bool, allocator := context.allocator) -> (indices : []int) {
indices = make([]int, len(data), allocator)
when size_of(E) != 0 {
if n := len(data); n > 1 {
for _, idx in indices {
indices[idx] = idx
}
_quick_sort_general_with_indices(data, indices, 0, n, _max_depth(n), less, .Less)
return indices
}
}
return indices
}
sort_by_cmp :: proc(data: $T/[]$E, cmp: proc(i, j: E) -> Ordering) {
when size_of(E) != 0 {
if n := len(data); n > 1 {
_quick_sort_general(data, 0, n, _max_depth(n), cmp, .Cmp)
}
}
}
// stable_sort sorts a slice
stable_sort :: proc(data: $T/[]$E) where ORD(E) {
when size_of(E) != 0 {
if n := len(data); n > 1 {
_stable_sort_general(data, struct{}{}, .Ordered)
}
}
}
// stable_sort_by sorts a slice with a given procedure to test whether two values are ordered "i < j"
stable_sort_by :: proc(data: $T/[]$E, less: proc(i, j: E) -> bool) {
when size_of(E) != 0 {
if n := len(data); n > 1 {
_stable_sort_general(data, less, .Less)
}
}
}
stable_sort_by_cmp :: proc(data: $T/[]$E, cmp: proc(i, j: E) -> Ordering) {
when size_of(E) != 0 {
if n := len(data); n > 1 {
_stable_sort_general(data, cmp, .Cmp)
}
}
}
@(require_results)
is_sorted :: proc(array: $T/[]$E) -> bool where ORD(E) {
for i := len(array)-1; i > 0; i -= 1 {
if array[i] < array[i-1] {
return false
}
}
return true
}
@(require_results)
is_sorted_by :: proc(array: $T/[]$E, less: proc(i, j: E) -> bool) -> bool {
for i := len(array)-1; i > 0; i -= 1 {
if less(array[i], array[i-1]) {
return false
}
}
return true
}
is_sorted_by_cmp :: is_sorted_cmp
@(require_results)
is_sorted_cmp :: proc(array: $T/[]$E, cmp: proc(i, j: E) -> Ordering) -> bool {
for i := len(array)-1; i > 0; i -= 1 {
if cmp(array[i], array[i-1]) == .Less {
return false
}
}
return true
}
reverse_sort :: proc(data: $T/[]$E) where ORD(E) {
sort_by(data, proc(i, j: E) -> bool {
return j < i
})
}
reverse_sort_by :: proc(data: $T/[]$E, less: proc(i, j: E) -> bool) {
context._internal = rawptr(less)
sort_by(data, proc(i, j: E) -> bool {
k := (proc(i, j: E) -> bool)(context._internal)
return k(j, i)
})
}
reverse_sort_by_cmp :: proc(data: $T/[]$E, cmp: proc(i, j: E) -> Ordering) {
context._internal = rawptr(cmp)
sort_by_cmp(data, proc(i, j: E) -> Ordering {
k := (proc(i, j: E) -> Ordering)(context._internal)
return k(j, i)
})
}
// TODO(bill): Should `sort_by_key` exist or is `sort_by` more than enough?
sort_by_key :: proc(data: $T/[]$E, key: proc(E) -> $K) where ORD(K) {
context._internal = rawptr(key)
sort_by(data, proc(i, j: E) -> bool {
k := (proc(E) -> K)(context._internal)
return k(i) < k(j)
})
}
reverse_sort_by_key :: proc(data: $T/[]$E, key: proc(E) -> $K) where ORD(K) {
context._internal = rawptr(key)
sort_by(data, proc(i, j: E) -> bool {
k := (proc(E) -> K)(context._internal)
return k(j) < k(i)
})
}
@(require_results)
is_sorted_by_key :: proc(array: $T/[]$E, key: proc(E) -> $K) -> bool where ORD(K) {
for i := len(array)-1; i > 0; i -= 1 {
if key(array[i]) < key(array[i-1]) {
return false
}
}
return true
}
@(private, require_results)
_max_depth :: proc(n: int) -> (depth: int) { // 2*ceil(log2(n+1))
for i := n; i > 0; i >>= 1 {
depth += 1
}
return depth * 2
}
|