1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
|
package strconv
import "decimal"
Decimal_Slice :: struct {
digits: []byte,
count: int,
decimal_point: int,
neg: bool,
}
Float_Info :: struct {
mantbits: uint,
expbits: uint,
bias: int,
}
_f16_info := Float_Info{10, 5, -15}
_f32_info := Float_Info{23, 8, -127}
_f64_info := Float_Info{52, 11, -1023}
generic_ftoa :: proc(buf: []byte, val: f64, fmt: byte, precision, bit_size: int) -> []byte {
bits: u64
flt: ^Float_Info
switch bit_size {
case 16:
bits = u64(transmute(u16)f16(val))
flt = &_f16_info
case 32:
bits = u64(transmute(u32)f32(val))
flt = &_f32_info
case 64:
bits = transmute(u64)val
flt = &_f64_info
case:
panic("strconv: invalid bit_size")
}
neg := bits>>(flt.expbits+flt.mantbits) != 0
exp := int(bits>>flt.mantbits) & (1<<flt.expbits - 1)
mant := bits & (u64(1) << flt.mantbits - 1)
switch exp {
case 1<<flt.expbits - 1:
s: string
if mant != 0 {
s = "NaN"
} else if neg {
s = "-Inf"
} else {
s = "+Inf"
}
n := copy(buf, s)
return buf[:n]
case 0: // denormalized
exp += 1
case:
mant |= u64(1) << flt.mantbits
}
exp += flt.bias
d_: decimal.Decimal
d := &d_
decimal.assign(d, mant)
decimal.shift(d, exp - int(flt.mantbits))
digs: Decimal_Slice
prec := precision
shortest := prec < 0
if shortest {
round_shortest(d, mant, exp, flt)
digs = Decimal_Slice{digits = d.digits[:], count = d.count, decimal_point = d.decimal_point}
switch fmt {
case 'e', 'E': prec = digs.count-1
case 'f', 'F': prec = max(digs.count-digs.decimal_point, 0)
case 'g', 'G': prec = digs.count
}
} else {
switch fmt {
case 'e', 'E': decimal.round(d, prec+1)
case 'f', 'F': decimal.round(d, d.decimal_point+prec)
case 'g', 'G':
if prec == 0 {
prec = 1
}
decimal.round(d, prec)
}
digs = Decimal_Slice{digits = d.digits[:], count = d.count, decimal_point = d.decimal_point}
}
return format_digits(buf, shortest, neg, digs, prec, fmt)
}
format_digits :: proc(buf: []byte, shortest: bool, neg: bool, digs: Decimal_Slice, precision: int, fmt: byte) -> []byte {
Buffer :: struct {
b: []byte,
n: int,
}
to_bytes :: proc(b: Buffer) -> []byte {
return b.b[:b.n]
}
add_bytes :: proc(buf: ^Buffer, bytes: ..byte) {
buf.n += copy(buf.b[buf.n:], bytes)
}
b := Buffer{b = buf}
prec := precision
switch fmt {
case 'f', 'F':
add_bytes(&b, '-' if neg else '+')
// integer, padded with zeros when needed
if digs.decimal_point > 0 {
m := min(digs.count, digs.decimal_point)
add_bytes(&b, ..digs.digits[0:m])
for ; m < digs.decimal_point; m += 1 {
add_bytes(&b, '0')
}
} else {
add_bytes(&b, '0')
}
// fractional part
if prec > 0 {
add_bytes(&b, '.')
for i in 0..<prec {
c: byte = '0'
if j := digs.decimal_point + i; 0 <= j && j < digs.count {
c = digs.digits[j]
}
add_bytes(&b, c)
}
}
return to_bytes(b)
case 'e', 'E':
add_bytes(&b, '-' if neg else '+')
ch := byte('0')
if digs.count != 0 {
ch = digs.digits[0]
}
add_bytes(&b, ch)
if prec > 0 {
add_bytes(&b, '.')
i := 1
m := min(digs.count, prec+1)
if i < m {
add_bytes(&b, ..digs.digits[i:m])
i = m
}
for ; i <= prec; i += 1 {
add_bytes(&b, '0')
}
}
add_bytes(&b, fmt)
exp := digs.decimal_point-1
if digs.count == 0 {
// Zero has exponent of 0
exp = 0
}
ch = '+'
if exp < 0 {
ch = '-'
exp = -exp
}
add_bytes(&b, ch)
switch {
case exp < 10: add_bytes(&b, '0', byte(exp)+'0') // add prefix 0
case exp < 100: add_bytes(&b, byte(exp/10)+'0', byte(exp%10)+'0')
case: add_bytes(&b, byte(exp/100)+'0', byte(exp/10)%10+'0', byte(exp%10)+'0')
}
return to_bytes(b)
case 'g', 'G':
eprec := prec
if eprec > digs.count && digs.count >= digs.decimal_point {
eprec = digs.count
}
if shortest {
eprec = 6
}
exp := digs.decimal_point - 1
if exp < -4 || exp >= eprec {
if prec > digs.count {
prec = digs.count
}
return format_digits(buf, shortest, neg, digs, prec-1, fmt+'e'-'g') // keep the same case
}
if prec > digs.decimal_point {
prec = digs.count
}
return format_digits(buf, shortest, neg, digs, max(prec-digs.decimal_point, 0), 'f')
case:
add_bytes(&b, '%', fmt)
return to_bytes(b)
}
}
round_shortest :: proc(d: ^decimal.Decimal, mant: u64, exp: int, flt: ^Float_Info) {
if mant == 0 { // If mantissa is zero, the number is zero
d.count = 0
return
}
/*
10^(dp-nd) > 2^(exp-mantbits)
log2(10) * (dp-nd) > exp-mantbits
log(2) >~ 0.332
332*(dp-nd) >= 100*(exp-mantbits)
*/
minexp := flt.bias+1
if exp > minexp && 332*(d.decimal_point-d.count) >= 100*(exp - int(flt.mantbits)) {
// Number is already its shortest
return
}
upper_: decimal.Decimal; upper := &upper_
decimal.assign(upper, 2*mant - 1)
decimal.shift(upper, exp - int(flt.mantbits) - 1)
mantlo: u64
explo: int
if mant > 1<<flt.mantbits || exp == minexp {
mantlo = mant-1
explo = exp
} else {
mantlo = 2*mant - 1
explo = exp-1
}
lower_: decimal.Decimal; lower := &lower_
decimal.assign(lower, 2*mantlo + 1)
decimal.shift(lower, explo - int(flt.mantbits) - 1)
inclusive := mant%2 == 0
for i in 0..<d.count {
l: byte = '0' // lower digit
if i < lower.count {
l = lower.digits[i]
}
m := d.digits[i] // middle digit
u: byte = '0' // upper digit
if i < upper.count {
u = upper.digits[i]
}
ok_round_down := l != m || inclusive && i+1 == lower.count
ok_round_up := m != u && (inclusive || m+1 < u || i+1 < upper.count)
if ok_round_down && ok_round_up {
decimal.round(d, i+1)
return
}
if ok_round_down {
decimal.round_down(d, i+1)
return
}
if ok_round_up {
decimal.round_up(d, i+1)
return
}
}
}
|