1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
|
#+build amd64
package sys_valgrind
import "base:intrinsics"
Client_Request :: enum uintptr {
Running_On_Valgrind = 4097,
Discard_Translations = 4098,
Client_Call0 = 4353,
Client_Call1 = 4354,
Client_Call2 = 4355,
Client_Call3 = 4356,
Count_Errors = 4609,
Gdb_Monitor_Command = 4610,
Malloc_Like_Block = 4865,
Resize_Inplace_Block = 4875,
Free_Like_Block = 4866,
Create_Mem_Pool = 4867,
Destroy_Mem_Pool = 4868,
Mem_Pool_Alloc = 4869,
Mem_Pool_Free = 4870,
Mem_Pool_Trim = 4871,
Move_Mem_Pool = 4872,
Mem_Pool_Change = 4873,
Mem_Pool_Exists = 4874,
Printf = 5121,
Printf_Backtrace = 5122,
Printf_Valist_By_Ref = 5123,
Printf_Backtrace_Valist_By_Ref = 5124,
Stack_Register = 5377,
Stack_Deregister = 5378,
Stack_Change = 5379,
Load_Pdb_Debug_Info = 5633,
Map_Ip_To_Src_Loc = 5889,
Change_Err_Disablement = 6145,
Vex_Init_For_Iri = 6401,
Inner_Threads = 6402,
}
@(require_results)
client_request_expr :: #force_inline proc "c" (default: uintptr, request: Client_Request, a0, a1, a2, a3, a4: uintptr) -> uintptr {
return intrinsics.valgrind_client_request(default, uintptr(request), a0, a1, a2, a3, a4)
}
client_request_stmt :: #force_inline proc "c" (request: Client_Request, a0, a1, a2, a3, a4: uintptr) {
_ = intrinsics.valgrind_client_request(0, uintptr(request), a0, a1, a2, a3, a4)
}
// Returns the number of Valgrinds this code is running under
// 0 - running natively
// 1 - running under Valgrind
// 2 - running under Valgrind which is running under another Valgrind
running_on_valgrind :: proc "c" () -> uint {
return uint(client_request_expr(0, .Running_On_Valgrind, 0, 0, 0, 0, 0))
}
// Discard translation of code in the slice qzz. Useful if you are debugging a JIT-er or some such,
// since it provides a way to make sure valgrind will retranslate the invalidated area.
discard_translations :: proc "c" (qzz: []byte) {
client_request_stmt(.Discard_Translations, uintptr(raw_data(qzz)), uintptr(len(qzz)), 0, 0, 0)
}
non_simd_call0 :: proc "c" (p: proc "c" (uintptr) -> uintptr) -> uintptr {
return client_request_expr(0, .Client_Call0, uintptr(rawptr(p)), 0, 0, 0, 0)
}
non_simd_call1 :: proc "c" (p: proc "c" (uintptr, uintptr) -> uintptr, a0: uintptr) -> uintptr {
return client_request_expr(0, .Client_Call1, uintptr(rawptr(p)), a0, 0, 0, 0)
}
non_simd_call2 :: proc "c" (p: proc "c" (uintptr, uintptr, uintptr) -> uintptr, a0, a1: uintptr) -> uintptr {
return client_request_expr(0, .Client_Call2, uintptr(rawptr(p)), a0, a1, 0, 0)
}
non_simd_call3 :: proc "c" (p: proc "c" (uintptr, uintptr, uintptr, uintptr) -> uintptr, a0, a1, a2: uintptr) -> uintptr {
return client_request_expr(0, .Client_Call3, uintptr(rawptr(p)), a0, a1, a2, 0)
}
// Counts the number of errors that have been recorded by a tool.
count_errrors :: proc "c" () -> uint {
return uint(client_request_expr(0, .Count_Errors, 0, 0, 0, 0, 0))
}
monitor_command :: proc "c" (command: cstring) -> bool {
return 0 != client_request_expr(0, .Gdb_Monitor_Command, uintptr(rawptr(command)), 0, 0, 0, 0)
}
malloc_like_block :: proc "c" (mem: []byte, rz_b: uintptr, is_zeroed: bool) {
client_request_stmt(.Malloc_Like_Block, uintptr(raw_data(mem)), uintptr(len(mem)), rz_b, uintptr(is_zeroed), 0)
}
resize_inplace_block :: proc "c" (old_mem: []byte, new_size: uint, rz_b: uintptr) {
client_request_stmt(.Resize_Inplace_Block, uintptr(raw_data(old_mem)), uintptr(len(old_mem)), uintptr(new_size), rz_b, 0)
}
free_like_block :: proc "c" (addr: rawptr, rz_b: uintptr) {
client_request_stmt(.Free_Like_Block, uintptr(addr), rz_b, 0, 0, 0)
}
Mem_Pool_Flags :: distinct bit_set[Mem_Pool_Flag; uintptr]
Mem_Pool_Flag :: enum uintptr {
Auto_Free = 0,
Meta_Pool = 1,
}
// Create a memory pool.
create_mem_pool :: proc "c" (pool: rawptr, rz_b: uintptr, is_zeroed: bool, flags: Mem_Pool_Flags) {
client_request_stmt(.Create_Mem_Pool, uintptr(pool), rz_b, uintptr(is_zeroed), transmute(uintptr)flags, 0)
}
// Destroy a memory pool.
destroy_mem_pool :: proc "c" (pool: rawptr) {
client_request_stmt(.Destroy_Mem_Pool, uintptr(pool), 0, 0, 0, 0)
}
// Associate a section of memory with a memory pool.
mem_pool_alloc :: proc "c" (pool: rawptr, mem: []byte) {
client_request_stmt(.Mem_Pool_Alloc, uintptr(pool), uintptr(raw_data(mem)), uintptr(len(mem)), 0, 0)
}
// Disassociate a section of memory from a memory pool.
mem_pool_free :: proc "c" (pool: rawptr, addr: rawptr) {
client_request_stmt(.Mem_Pool_Free, uintptr(pool), uintptr(addr), 0, 0, 0)
}
// Disassociate parts of a section of memory outside a particular range.
mem_pool_trim :: proc "c" (pool: rawptr, mem: []byte) {
client_request_stmt(.Mem_Pool_Trim, uintptr(pool), uintptr(raw_data(mem)), uintptr(len(mem)), 0, 0)
}
// Resize and/or move a section of memory associated with a memory pool.
move_mem_pool :: proc "c" (pool_a, pool_b: rawptr) {
client_request_stmt(.Move_Mem_Pool, uintptr(pool_a), uintptr(pool_b), 0, 0, 0)
}
// Resize and/or move a section of memory associated with a memory pool.
mem_pool_change :: proc "c" (pool: rawptr, addr_a: rawptr, mem: []byte) {
client_request_stmt(.Mem_Pool_Change, uintptr(pool), uintptr(addr_a), uintptr(raw_data(mem)), uintptr(len(mem)), 0)
}
// Return true if a memory pool exists
mem_pool_exists :: proc "c" (pool: rawptr) -> bool {
return 0 != client_request_expr(0, .Mem_Pool_Exists, uintptr(pool), 0, 0, 0, 0)
}
// Mark a section of memory as being a stack. Returns a stack id.
stack_register :: proc "c" (stack: []byte) -> (stack_id: uintptr) {
ptr := uintptr(raw_data(stack))
return client_request_expr(0, .Stack_Register, ptr, ptr+uintptr(len(stack)), 0, 0, 0)
}
// Unmark a section of memory associated with a stack id as being a stack.
stack_deregister :: proc "c" (id: uintptr) {
client_request_stmt(.Stack_Deregister, id, 0, 0, 0, 0)
}
// Change the start and end address of the stack id with the `new_stack` slice.
stack_change :: proc "c" (id: uint, new_stack: []byte) {
ptr := uintptr(raw_data(new_stack))
client_request_stmt(.Stack_Change, uintptr(id), ptr, ptr + uintptr(len(new_stack)), 0, 0)
}
// Disable error reporting for the current thread/
// It behaves in a stack-like way, meaning you can safely call this multiple times
// given that `enable_error_reporting()` is called the same number of times to
// re-enable the error reporting.
// The first call of this macro disables reporting.
// Subsequent calls have no effect except to increase the number of `enable_error_reporting()`
// calls needed to re-enable reporting.
// Child threads do not inherit this setting from their parents;
// they are always created with reporting enabled.
disable_error_reporting :: proc "c" () {
client_request_stmt(.Change_Err_Disablement, 1, 0, 0, 0, 0)
}
// Re-enable error reporting
enable_error_reporting :: proc "c" () {
client_request_stmt(.Change_Err_Disablement, ~uintptr(0), 0, 0, 0, 0)
}
inner_threads :: proc "c" (qzz: rawptr) {
client_request_stmt(.Inner_Threads, uintptr(qzz), 0, 0, 0, 0)
}
// Map a code address to a source file name and line number.
// `buf64` must point to a 64-byte buffer in the caller's address space.
// The result will be dumped in there and is guaranteed to be zero terminated.
// If no info is found, the first byte is set to zero.
map_ip_to_src_loc :: proc "c" (addr: rawptr, buf64: ^[64]byte) -> uintptr {
return client_request_expr(0, .Map_Ip_To_Src_Loc, uintptr(addr), uintptr(buf64), 0, 0, 0)
}
|