1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
|
package regex_compiler
/*
(c) Copyright 2024 Feoramund <rune@swevencraft.org>.
Made available under Odin's BSD-3 license.
List of contributors:
Feoramund: Initial implementation.
*/
import "base:intrinsics"
import "core:text/regex/common"
import "core:text/regex/parser"
import "core:text/regex/tokenizer"
import "core:text/regex/virtual_machine"
import "core:unicode"
Token :: tokenizer.Token
Token_Kind :: tokenizer.Token_Kind
Tokenizer :: tokenizer.Tokenizer
Rune_Class_Range :: parser.Rune_Class_Range
Rune_Class_Data :: parser.Rune_Class_Data
Node :: parser.Node
Node_Rune :: parser.Node_Rune
Node_Rune_Class :: parser.Node_Rune_Class
Node_Wildcard :: parser.Node_Wildcard
Node_Concatenation :: parser.Node_Concatenation
Node_Alternation :: parser.Node_Alternation
Node_Repeat_Zero :: parser.Node_Repeat_Zero
Node_Repeat_Zero_Non_Greedy :: parser.Node_Repeat_Zero_Non_Greedy
Node_Repeat_One :: parser.Node_Repeat_One
Node_Repeat_One_Non_Greedy :: parser.Node_Repeat_One_Non_Greedy
Node_Repeat_N :: parser.Node_Repeat_N
Node_Optional :: parser.Node_Optional
Node_Optional_Non_Greedy :: parser.Node_Optional_Non_Greedy
Node_Group :: parser.Node_Group
Node_Anchor :: parser.Node_Anchor
Node_Word_Boundary :: parser.Node_Word_Boundary
Node_Match_All_And_Escape :: parser.Node_Match_All_And_Escape
Opcode :: virtual_machine.Opcode
Program :: [dynamic]Opcode
JUMP_SIZE :: size_of(Opcode) + 1 * size_of(u16)
SPLIT_SIZE :: size_of(Opcode) + 2 * size_of(u16)
Compiler :: struct {
flags: common.Flags,
class_data: [dynamic]Rune_Class_Data,
}
Error :: enum {
None,
Program_Too_Big,
Too_Many_Classes,
}
classes_are_exact :: proc(q, w: ^Rune_Class_Data) -> bool #no_bounds_check {
assert(q != nil)
assert(w != nil)
if q == w {
return true
}
if len(q.runes) != len(w.runes) || len(q.ranges) != len(w.ranges) {
return false
}
for r, i in q.runes {
if r != w.runes[i] {
return false
}
}
for r, i in q.ranges {
if r.lower != w.ranges[i].lower || r.upper != w.ranges[i].upper {
return false
}
}
return true
}
map_all_classes :: proc(tree: Node, collection: ^[dynamic]Rune_Class_Data) {
if tree == nil {
return
}
switch specific in tree {
case ^Node_Rune: break
case ^Node_Wildcard: break
case ^Node_Anchor: break
case ^Node_Word_Boundary: break
case ^Node_Match_All_And_Escape: break
case ^Node_Concatenation:
for subnode in specific.nodes {
map_all_classes(subnode, collection)
}
case ^Node_Repeat_Zero:
map_all_classes(specific.inner, collection)
case ^Node_Repeat_Zero_Non_Greedy:
map_all_classes(specific.inner, collection)
case ^Node_Repeat_One:
map_all_classes(specific.inner, collection)
case ^Node_Repeat_One_Non_Greedy:
map_all_classes(specific.inner, collection)
case ^Node_Repeat_N:
map_all_classes(specific.inner, collection)
case ^Node_Optional:
map_all_classes(specific.inner, collection)
case ^Node_Optional_Non_Greedy:
map_all_classes(specific.inner, collection)
case ^Node_Group:
map_all_classes(specific.inner, collection)
case ^Node_Alternation:
map_all_classes(specific.left, collection)
map_all_classes(specific.right, collection)
case ^Node_Rune_Class:
unseen := true
for &value in collection {
if classes_are_exact(&specific.data, &value) {
unseen = false
break
}
}
if unseen {
append(collection, specific.data)
}
}
}
append_raw :: #force_inline proc(code: ^Program, data: $T) {
// NOTE: This is system-dependent endian.
for b in transmute([size_of(T)]byte)data {
append(code, cast(Opcode)b)
}
}
inject_raw :: #force_inline proc(code: ^Program, start: int, data: $T) {
// NOTE: This is system-dependent endian.
for b, i in transmute([size_of(T)]byte)data {
inject_at(code, start + i, cast(Opcode)b)
}
}
@require_results
generate_code :: proc(c: ^Compiler, node: Node) -> (code: Program) {
if node == nil {
return
}
// NOTE: For Jump/Split arguments, we write as i16 and will reinterpret
// this later when relative jumps are turned into absolute jumps.
switch specific in node {
// Atomic Nodes:
case ^Node_Rune:
if .Unicode not_in c.flags || specific.data < unicode.MAX_LATIN1 {
append(&code, Opcode.Byte)
append(&code, cast(Opcode)specific.data)
} else {
append(&code, Opcode.Rune)
append_raw(&code, specific.data)
}
case ^Node_Rune_Class:
if specific.negating {
append(&code, Opcode.Rune_Class_Negated)
} else {
append(&code, Opcode.Rune_Class)
}
index := -1
for &data, i in c.class_data {
if classes_are_exact(&data, &specific.data) {
index = i
break
}
}
assert(index != -1, "Unable to find collected Rune_Class_Data index.")
append(&code, Opcode(index))
case ^Node_Wildcard:
append(&code, Opcode.Wildcard)
case ^Node_Anchor:
if .Multiline in c.flags {
if specific.start {
append(&code, Opcode.Assert_Start_Multiline)
} else {
append(&code, Opcode.Multiline_Open)
append(&code, Opcode.Multiline_Close)
}
} else {
if specific.start {
append(&code, Opcode.Assert_Start)
} else {
append(&code, Opcode.Assert_End)
}
}
case ^Node_Word_Boundary:
if specific.non_word {
append(&code, Opcode.Assert_Non_Word_Boundary)
} else {
append(&code, Opcode.Assert_Word_Boundary)
}
// Compound Nodes:
case ^Node_Group:
code = generate_code(c, specific.inner)
if specific.capture && .No_Capture not_in c.flags {
inject_at(&code, 0, Opcode.Save)
inject_at(&code, 1, Opcode(2 * specific.capture_id))
append(&code, Opcode.Save)
append(&code, Opcode(2 * specific.capture_id + 1))
}
case ^Node_Alternation:
left := generate_code(c, specific.left)
right := generate_code(c, specific.right)
left_len := len(left)
// Avoiding duplicate allocation by reusing `left`.
code = left
inject_at(&code, 0, Opcode.Split)
inject_raw(&code, size_of(byte) , i16(SPLIT_SIZE))
inject_raw(&code, size_of(byte) + size_of(i16), i16(SPLIT_SIZE + left_len + JUMP_SIZE))
append(&code, Opcode.Jump)
append_raw(&code, i16(len(right) + JUMP_SIZE))
for opcode in right {
append(&code, opcode)
}
case ^Node_Concatenation:
for subnode in specific.nodes {
subnode_code := generate_code(c, subnode)
for opcode in subnode_code {
append(&code, opcode)
}
}
case ^Node_Repeat_Zero:
code = generate_code(c, specific.inner)
original_len := len(code)
inject_at(&code, 0, Opcode.Split)
inject_raw(&code, size_of(byte) , i16(SPLIT_SIZE))
inject_raw(&code, size_of(byte) + size_of(i16), i16(SPLIT_SIZE + original_len + JUMP_SIZE))
append(&code, Opcode.Jump)
append_raw(&code, i16(-original_len - SPLIT_SIZE))
case ^Node_Repeat_Zero_Non_Greedy:
code = generate_code(c, specific.inner)
original_len := len(code)
inject_at(&code, 0, Opcode.Split)
inject_raw(&code, size_of(byte) , i16(SPLIT_SIZE + original_len + JUMP_SIZE))
inject_raw(&code, size_of(byte) + size_of(i16), i16(SPLIT_SIZE))
append(&code, Opcode.Jump)
append_raw(&code, i16(-original_len - SPLIT_SIZE))
case ^Node_Repeat_One:
code = generate_code(c, specific.inner)
original_len := len(code)
append(&code, Opcode.Split)
append_raw(&code, i16(-original_len))
append_raw(&code, i16(SPLIT_SIZE))
case ^Node_Repeat_One_Non_Greedy:
code = generate_code(c, specific.inner)
original_len := len(code)
append(&code, Opcode.Split)
append_raw(&code, i16(SPLIT_SIZE))
append_raw(&code, i16(-original_len))
case ^Node_Repeat_N:
inside := generate_code(c, specific.inner)
original_len := len(inside)
if specific.lower == specific.upper { // {N}
// e{N} ... evaluates to ... e^N
for i := 0; i < specific.upper; i += 1 {
for opcode in inside {
append(&code, opcode)
}
}
} else if specific.lower == -1 && specific.upper > 0 { // {,M}
// e{,M} ... evaluates to ... e?^M
for i := 0; i < specific.upper; i += 1 {
append(&code, Opcode.Split)
append_raw(&code, i16(SPLIT_SIZE))
append_raw(&code, i16(SPLIT_SIZE + original_len))
for opcode in inside {
append(&code, opcode)
}
}
} else if specific.lower >= 0 && specific.upper == -1 { // {N,}
// e{N,} ... evaluates to ... e^N e*
for i := 0; i < specific.lower; i += 1 {
for opcode in inside {
append(&code, opcode)
}
}
append(&code, Opcode.Split)
append_raw(&code, i16(SPLIT_SIZE))
append_raw(&code, i16(SPLIT_SIZE + original_len + JUMP_SIZE))
for opcode in inside {
append(&code, opcode)
}
append(&code, Opcode.Jump)
append_raw(&code, i16(-original_len - SPLIT_SIZE))
} else if specific.lower >= 0 && specific.upper > 0 {
// e{N,M} evaluates to ... e^N e?^(M-N)
for i := 0; i < specific.lower; i += 1 {
for opcode in inside {
append(&code, opcode)
}
}
for i := 0; i < specific.upper - specific.lower; i += 1 {
append(&code, Opcode.Split)
append_raw(&code, i16(SPLIT_SIZE + original_len))
append_raw(&code, i16(SPLIT_SIZE))
for opcode in inside {
append(&code, opcode)
}
}
} else {
panic("RegEx compiler received invalid repetition group.")
}
case ^Node_Optional:
code = generate_code(c, specific.inner)
original_len := len(code)
inject_at(&code, 0, Opcode.Split)
inject_raw(&code, size_of(byte) , i16(SPLIT_SIZE))
inject_raw(&code, size_of(byte) + size_of(i16), i16(SPLIT_SIZE + original_len))
case ^Node_Optional_Non_Greedy:
code = generate_code(c, specific.inner)
original_len := len(code)
inject_at(&code, 0, Opcode.Split)
inject_raw(&code, size_of(byte) , i16(SPLIT_SIZE + original_len))
inject_raw(&code, size_of(byte) + size_of(i16), i16(SPLIT_SIZE))
case ^Node_Match_All_And_Escape:
append(&code, Opcode.Match_All_And_Escape)
}
return
}
@require_results
compile :: proc(tree: Node, flags: common.Flags) -> (code: Program, class_data: [dynamic]Rune_Class_Data, err: Error) {
if tree == nil {
if .No_Capture not_in flags {
append(&code, Opcode.Save); append(&code, Opcode(0x00))
append(&code, Opcode.Save); append(&code, Opcode(0x01))
append(&code, Opcode.Match)
} else {
append(&code, Opcode.Match_And_Exit)
}
return
}
c: Compiler
c.flags = flags
map_all_classes(tree, &class_data)
if len(class_data) >= common.MAX_CLASSES {
err = .Too_Many_Classes
return
}
c.class_data = class_data
code = generate_code(&c, tree)
pc_open := 0
optimize_opening: {
// Check if the opening to the pattern is predictable.
// If so, use one of the optimized Wait opcodes.
iter := virtual_machine.Opcode_Iterator{ code[:], 0 }
seek_loop: for opcode, pc in virtual_machine.iterate_opcodes(&iter) {
#partial switch opcode {
case .Byte:
inject_at(&code, pc_open, Opcode.Wait_For_Byte)
pc_open += size_of(Opcode)
inject_at(&code, pc_open, Opcode(code[pc + size_of(Opcode) + pc_open]))
pc_open += size_of(u8)
break optimize_opening
case .Rune:
operand := intrinsics.unaligned_load(cast(^rune)&code[pc+1])
inject_at(&code, pc_open, Opcode.Wait_For_Rune)
pc_open += size_of(Opcode)
inject_raw(&code, pc_open, operand)
pc_open += size_of(rune)
break optimize_opening
case .Rune_Class:
inject_at(&code, pc_open, Opcode.Wait_For_Rune_Class)
pc_open += size_of(Opcode)
inject_at(&code, pc_open, Opcode(code[pc + size_of(Opcode) + pc_open]))
pc_open += size_of(u8)
break optimize_opening
case .Rune_Class_Negated:
inject_at(&code, pc_open, Opcode.Wait_For_Rune_Class_Negated)
pc_open += size_of(Opcode)
inject_at(&code, pc_open, Opcode(code[pc + size_of(Opcode) + pc_open]))
pc_open += size_of(u8)
break optimize_opening
case .Save:
continue
case .Assert_Start, .Assert_Start_Multiline:
break optimize_opening
case:
break seek_loop
}
}
// `.*?`
inject_at(&code, pc_open, Opcode.Split)
pc_open += size_of(byte)
inject_raw(&code, pc_open, i16(SPLIT_SIZE + size_of(byte) + JUMP_SIZE))
pc_open += size_of(i16)
inject_raw(&code, pc_open, i16(SPLIT_SIZE))
pc_open += size_of(i16)
inject_at(&code, pc_open, Opcode.Wildcard)
pc_open += size_of(byte)
inject_at(&code, pc_open, Opcode.Jump)
pc_open += size_of(byte)
inject_raw(&code, pc_open, i16(-size_of(byte) - SPLIT_SIZE))
pc_open += size_of(i16)
}
if .No_Capture not_in flags {
// `(` <generated code>
inject_at(&code, pc_open, Opcode.Save)
inject_at(&code, pc_open + size_of(byte), Opcode(0x00))
// `)`
append(&code, Opcode.Save); append(&code, Opcode(0x01))
append(&code, Opcode.Match)
} else {
append(&code, Opcode.Match_And_Exit)
}
if len(code) >= common.MAX_PROGRAM_SIZE {
err = .Program_Too_Big
return
}
// NOTE: No further opcode addition beyond this point, as we've already
// checked the program size. Removal or transformation is fine.
// Post-Compile Optimizations:
// * Jump Extension
//
// A:RelJmp(1) -> B:RelJmp(2) => A:RelJmp(2)
if .No_Optimization not_in flags {
for passes_left := 1; passes_left > 0; passes_left -= 1 {
do_another_pass := false
iter := virtual_machine.Opcode_Iterator{ code[:], 0 }
for opcode, pc in virtual_machine.iterate_opcodes(&iter) {
#partial switch opcode {
case .Jump:
jmp := cast(^i16)&code[pc+size_of(Opcode)]
jmp_value := intrinsics.unaligned_load(jmp)
if code[cast(i16)pc+jmp_value] == .Jump {
next_jmp := intrinsics.unaligned_load(cast(^i16)&code[cast(i16)pc+jmp_value+size_of(Opcode)])
intrinsics.unaligned_store(jmp, jmp_value + next_jmp)
do_another_pass = true
}
case .Split:
jmp_x := cast(^i16)&code[pc+size_of(Opcode)]
jmp_x_value := intrinsics.unaligned_load(jmp_x)
if code[cast(i16)pc+jmp_x_value] == .Jump {
next_jmp := intrinsics.unaligned_load(cast(^i16)&code[cast(i16)pc+jmp_x_value+size_of(Opcode)])
intrinsics.unaligned_store(jmp_x, jmp_x_value + next_jmp)
do_another_pass = true
}
jmp_y := cast(^i16)&code[pc+size_of(Opcode)+size_of(i16)]
jmp_y_value := intrinsics.unaligned_load(jmp_y)
if code[cast(i16)pc+jmp_y_value] == .Jump {
next_jmp := intrinsics.unaligned_load(cast(^i16)&code[cast(i16)pc+jmp_y_value+size_of(Opcode)])
intrinsics.unaligned_store(jmp_y, jmp_y_value + next_jmp)
do_another_pass = true
}
}
}
if do_another_pass {
passes_left += 1
}
}
}
// * Relative Jump to Absolute Jump
//
// RelJmp{PC +/- N} => AbsJmp{M}
iter := virtual_machine.Opcode_Iterator{ code[:], 0 }
for opcode, pc in virtual_machine.iterate_opcodes(&iter) {
// NOTE: The virtual machine implementation depends on this.
#partial switch opcode {
case .Jump:
jmp := cast(^u16)&code[pc+size_of(Opcode)]
intrinsics.unaligned_store(jmp, intrinsics.unaligned_load(jmp) + cast(u16)pc)
case .Split:
jmp_x := cast(^u16)&code[pc+size_of(Opcode)]
intrinsics.unaligned_store(jmp_x, intrinsics.unaligned_load(jmp_x) + cast(u16)pc)
jmp_y := cast(^u16)&code[pc+size_of(Opcode)+size_of(i16)]
intrinsics.unaligned_store(jmp_y, intrinsics.unaligned_load(jmp_y) + cast(u16)pc)
}
}
return
}
|