1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
|
package thread
/*
thread.Pool
Copyright 2022 eisbehr
Made available under Odin's BSD-3 license.
*/
import "core:intrinsics"
import "core:sync"
import "core:mem"
Task_Proc :: #type proc(task: Task)
Task :: struct {
procedure: Task_Proc,
data: rawptr,
user_index: int,
allocator: mem.Allocator,
}
// Do not access the pool's members directly while the pool threads are running,
// since they use different kinds of locking and mutual exclusion devices.
// Careless access can and will lead to nasty bugs. Once initialized, the
// pool's memory address is not allowed to change until it is destroyed.
Pool :: struct {
allocator: mem.Allocator,
mutex: sync.Mutex,
sem_available: sync.Sema,
// the following values are atomic
num_waiting: int,
num_in_processing: int,
num_outstanding: int, // num_waiting + num_in_processing
num_done: int,
// end of atomics
is_running: bool,
threads: []^Thread,
tasks: [dynamic]Task,
tasks_done: [dynamic]Task,
}
// Once initialized, the pool's memory address is not allowed to change until
// it is destroyed.
//
// The thread pool requires an allocator which it either owns, or which is thread safe.
pool_init :: proc(pool: ^Pool, allocator: mem.Allocator, thread_count: int) {
context.allocator = allocator
pool.allocator = allocator
pool.tasks = make([dynamic]Task)
pool.tasks_done = make([dynamic]Task)
pool.threads = make([]^Thread, max(thread_count, 1))
pool.is_running = true
for _, i in pool.threads {
t := create(proc(t: ^Thread) {
pool := (^Pool)(t.data)
for intrinsics.atomic_load(&pool.is_running) {
sync.wait(&pool.sem_available)
if task, ok := pool_pop_waiting(pool); ok {
pool_do_work(pool, task)
}
}
sync.post(&pool.sem_available, 1)
})
t.user_index = i
t.data = pool
pool.threads[i] = t
}
}
pool_destroy :: proc(pool: ^Pool) {
delete(pool.tasks)
delete(pool.tasks_done)
for &t in pool.threads {
destroy(t)
}
delete(pool.threads, pool.allocator)
}
pool_start :: proc(pool: ^Pool) {
for t in pool.threads {
start(t)
}
}
// Finish tasks that have already started processing, then shut down all pool
// threads. Might leave over waiting tasks, any memory allocated for the
// user data of those tasks will not be freed.
pool_join :: proc(pool: ^Pool) {
intrinsics.atomic_store(&pool.is_running, false)
sync.post(&pool.sem_available, len(pool.threads))
yield()
started_count: int
for started_count < len(pool.threads) {
started_count = 0
for t in pool.threads {
if .Started in t.flags {
started_count += 1
if .Joined not_in t.flags {
join(t)
}
}
}
}
}
// Add a task to the thread pool.
//
// Tasks can be added from any thread, not just the thread that created
// the thread pool. You can even add tasks from inside other tasks.
//
// Each task also needs an allocator which it either owns, or which is thread
// safe.
pool_add_task :: proc(pool: ^Pool, allocator: mem.Allocator, procedure: Task_Proc, data: rawptr, user_index: int = 0) {
sync.guard(&pool.mutex)
append(&pool.tasks, Task{
procedure = procedure,
data = data,
user_index = user_index,
allocator = allocator,
})
intrinsics.atomic_add(&pool.num_waiting, 1)
intrinsics.atomic_add(&pool.num_outstanding, 1)
sync.post(&pool.sem_available, 1)
}
// Number of tasks waiting to be processed. Only informational, mostly for
// debugging. Don't rely on this value being consistent with other num_*
// values.
pool_num_waiting :: #force_inline proc(pool: ^Pool) -> int {
return intrinsics.atomic_load(&pool.num_waiting)
}
// Number of tasks currently being processed. Only informational, mostly for
// debugging. Don't rely on this value being consistent with other num_*
// values.
pool_num_in_processing :: #force_inline proc(pool: ^Pool) -> int {
return intrinsics.atomic_load(&pool.num_in_processing)
}
// Outstanding tasks are all tasks that are not done, that is, tasks that are
// waiting, as well as tasks that are currently being processed. Only
// informational, mostly for debugging. Don't rely on this value being
// consistent with other num_* values.
pool_num_outstanding :: #force_inline proc(pool: ^Pool) -> int {
return intrinsics.atomic_load(&pool.num_outstanding)
}
// Number of tasks which are done processing. Only informational, mostly for
// debugging. Don't rely on this value being consistent with other num_*
// values.
pool_num_done :: #force_inline proc(pool: ^Pool) -> int {
return intrinsics.atomic_load(&pool.num_done)
}
// If tasks are only being added from one thread, and this procedure is being
// called from that same thread, it will reliably tell if the thread pool is
// empty or not. Empty in this case means there are no tasks waiting, being
// processed, or _done_.
pool_is_empty :: #force_inline proc(pool: ^Pool) -> bool {
return pool_num_outstanding(pool) == 0 && pool_num_done(pool) == 0
}
// Mostly for internal use.
pool_pop_waiting :: proc(pool: ^Pool) -> (task: Task, got_task: bool) {
sync.guard(&pool.mutex)
if len(pool.tasks) != 0 {
intrinsics.atomic_sub(&pool.num_waiting, 1)
intrinsics.atomic_add(&pool.num_in_processing, 1)
task = pop_front(&pool.tasks)
got_task = true
}
return
}
// Use this to take out finished tasks.
pool_pop_done :: proc(pool: ^Pool) -> (task: Task, got_task: bool) {
sync.guard(&pool.mutex)
if len(pool.tasks_done) != 0 {
task = pop_front(&pool.tasks_done)
got_task = true
intrinsics.atomic_sub(&pool.num_done, 1)
}
return
}
// Mostly for internal use.
pool_do_work :: proc(pool: ^Pool, task: Task) {
{
context.allocator = task.allocator
task.procedure(task)
}
sync.guard(&pool.mutex)
append(&pool.tasks_done, task)
intrinsics.atomic_add(&pool.num_done, 1)
intrinsics.atomic_sub(&pool.num_outstanding, 1)
intrinsics.atomic_sub(&pool.num_in_processing, 1)
}
// Process the rest of the tasks, also use this thread for processing, then join
// all the pool threads.
pool_finish :: proc(pool: ^Pool) {
for task in pool_pop_waiting(pool) {
pool_do_work(pool, task)
}
pool_join(pool)
}
|