1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
|
// +build linux, darwin, freebsd, openbsd, netbsd, haiku
// +private
package thread
import "base:intrinsics"
import "core:sync"
import "core:sys/unix"
CAS :: intrinsics.atomic_compare_exchange_strong
// NOTE(tetra): Aligned here because of core/unix/pthread_linux.odin/pthread_t.
// Also see core/sys/darwin/mach_darwin.odin/semaphore_t.
Thread_Os_Specific :: struct #align(16) {
unix_thread: unix.pthread_t, // NOTE: very large on Darwin, small on Linux.
cond: sync.Cond,
mutex: sync.Mutex,
}
//
// Creates a thread which will run the given procedure.
// It then waits for `start` to be called.
//
_create :: proc(procedure: Thread_Proc, priority: Thread_Priority) -> ^Thread {
__unix_thread_entry_proc :: proc "c" (t: rawptr) -> rawptr {
t := (^Thread)(t)
when ODIN_OS != .Darwin {
// We need to give the thread a moment to start up before we enable cancellation.
can_set_thread_cancel_state := unix.pthread_setcancelstate(unix.PTHREAD_CANCEL_ENABLE, nil) == 0
}
sync.lock(&t.mutex)
t.id = sync.current_thread_id()
for (.Started not_in t.flags) {
sync.wait(&t.cond, &t.mutex)
}
if .Joined in t.flags {
return nil
}
when ODIN_OS != .Darwin {
// Enable thread's cancelability.
if can_set_thread_cancel_state {
unix.pthread_setcanceltype (unix.PTHREAD_CANCEL_ASYNCHRONOUS, nil)
unix.pthread_setcancelstate(unix.PTHREAD_CANCEL_ENABLE, nil)
}
}
{
init_context := t.init_context
// NOTE(tetra, 2023-05-31): Must do this AFTER thread.start() is called, so that the user can set the init_context, etc!
// Here on Unix, we start the OS thread in a running state, and so we manually have it wait on a condition
// variable above. We must perform that waiting BEFORE we select the context!
context = _select_context_for_thread(init_context)
defer _maybe_destroy_default_temp_allocator(init_context)
t.procedure(t)
}
intrinsics.atomic_store(&t.flags, t.flags + { .Done })
sync.unlock(&t.mutex)
if .Self_Cleanup in t.flags {
t.unix_thread = {}
// NOTE(ftphikari): It doesn't matter which context 'free' received, right?
context = {}
free(t, t.creation_allocator)
}
return nil
}
attrs: unix.pthread_attr_t
if unix.pthread_attr_init(&attrs) != 0 {
return nil // NOTE(tetra, 2019-11-01): POSIX OOM.
}
defer unix.pthread_attr_destroy(&attrs)
// NOTE(tetra, 2019-11-01): These only fail if their argument is invalid.
assert(unix.pthread_attr_setdetachstate(&attrs, unix.PTHREAD_CREATE_JOINABLE) == 0)
when ODIN_OS != .Haiku && ODIN_OS != .NetBSD {
assert(unix.pthread_attr_setinheritsched(&attrs, unix.PTHREAD_EXPLICIT_SCHED) == 0)
}
thread := new(Thread)
if thread == nil {
return nil
}
thread.creation_allocator = context.allocator
// Set thread priority.
policy: i32
res: i32
when ODIN_OS != .Haiku && ODIN_OS != .NetBSD {
res = unix.pthread_attr_getschedpolicy(&attrs, &policy)
assert(res == 0)
}
params: unix.sched_param
res = unix.pthread_attr_getschedparam(&attrs, ¶ms)
assert(res == 0)
low := unix.sched_get_priority_min(policy)
high := unix.sched_get_priority_max(policy)
switch priority {
case .Normal: // Okay
case .Low: params.sched_priority = low + 1
case .High: params.sched_priority = high
}
res = unix.pthread_attr_setschedparam(&attrs, ¶ms)
assert(res == 0)
thread.procedure = procedure
if unix.pthread_create(&thread.unix_thread, &attrs, __unix_thread_entry_proc, thread) != 0 {
free(thread, thread.creation_allocator)
return nil
}
return thread
}
_start :: proc(t: ^Thread) {
// sync.guard(&t.mutex)
t.flags += { .Started }
sync.signal(&t.cond)
}
_is_done :: proc(t: ^Thread) -> bool {
return .Done in intrinsics.atomic_load(&t.flags)
}
_join :: proc(t: ^Thread) {
// sync.guard(&t.mutex)
if unix.pthread_equal(unix.pthread_self(), t.unix_thread) {
return
}
// Preserve other flags besides `.Joined`, like `.Started`.
unjoined := intrinsics.atomic_load(&t.flags) - {.Joined}
joined := unjoined + {.Joined}
// Try to set `t.flags` from unjoined to joined. If it returns joined,
// it means the previous value had that flag set and we can return.
if res, ok := CAS(&t.flags, unjoined, joined); res == joined && !ok {
return
}
// Prevent non-started threads from blocking main thread with initial wait
// condition.
if .Started not_in unjoined {
_start(t)
}
unix.pthread_join(t.unix_thread, nil)
}
_join_multiple :: proc(threads: ..^Thread) {
for t in threads {
_join(t)
}
}
_destroy :: proc(t: ^Thread) {
_join(t)
t.unix_thread = {}
free(t, t.creation_allocator)
}
_terminate :: proc(t: ^Thread, exit_code: int) {
// `pthread_cancel` is unreliable on Darwin for unknown reasons.
when ODIN_OS != .Darwin {
unix.pthread_cancel(t.unix_thread)
}
}
_yield :: proc() {
unix.sched_yield()
}
|