1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
|
//+build windows
//+private
package thread
import "core:runtime"
import "core:intrinsics"
import "core:sync"
import win32 "core:sys/windows"
Thread_State :: enum u8 {
Started,
Joined,
Done,
}
Thread_Os_Specific :: struct {
win32_thread: win32.HANDLE,
win32_thread_id: win32.DWORD,
mutex: sync.Mutex,
flags: bit_set[Thread_State; u8],
}
_thread_priority_map := [Thread_Priority]i32{
.Normal = 0,
.Low = -2,
.High = +2,
}
_create :: proc(procedure: Thread_Proc, priority := Thread_Priority.Normal) -> ^Thread {
win32_thread_id: win32.DWORD
__windows_thread_entry_proc :: proc "stdcall" (t_: rawptr) -> win32.DWORD {
t := (^Thread)(t_)
context = t.init_context.? or_else runtime.default_context()
t.id = sync.current_thread_id()
t.procedure(t)
intrinsics.atomic_store(&t.flags, t.flags + {.Done})
if t.init_context == nil {
if context.temp_allocator.data == &runtime.global_default_temp_allocator_data {
runtime.default_temp_allocator_destroy(auto_cast context.temp_allocator.data)
}
}
return 0
}
thread := new(Thread)
if thread == nil {
return nil
}
thread.creation_allocator = context.allocator
win32_thread := win32.CreateThread(nil, 0, __windows_thread_entry_proc, thread, win32.CREATE_SUSPENDED, &win32_thread_id)
if win32_thread == nil {
free(thread, thread.creation_allocator)
return nil
}
thread.procedure = procedure
thread.win32_thread = win32_thread
thread.win32_thread_id = win32_thread_id
thread.init_context = context
ok := win32.SetThreadPriority(win32_thread, _thread_priority_map[priority])
assert(ok == true)
return thread
}
_start :: proc(t: ^Thread) {
sync.guard(&t.mutex)
t.flags += {.Started}
win32.ResumeThread(t.win32_thread)
}
_is_done :: proc(t: ^Thread) -> bool {
// NOTE(tetra, 2019-10-31): Apparently using wait_for_single_object and
// checking if it didn't time out immediately, is not good enough,
// so we do it this way instead.
return .Done in sync.atomic_load(&t.flags)
}
_join :: proc(t: ^Thread) {
sync.guard(&t.mutex)
if .Joined in t.flags || t.win32_thread == win32.INVALID_HANDLE {
return
}
win32.WaitForSingleObject(t.win32_thread, win32.INFINITE)
win32.CloseHandle(t.win32_thread)
t.win32_thread = win32.INVALID_HANDLE
t.flags += {.Joined}
}
_join_multiple :: proc(threads: ..^Thread) {
MAXIMUM_WAIT_OBJECTS :: 64
handles: [MAXIMUM_WAIT_OBJECTS]win32.HANDLE
for k := 0; k < len(threads); k += MAXIMUM_WAIT_OBJECTS {
count := min(len(threads) - k, MAXIMUM_WAIT_OBJECTS)
j := 0
for i in 0..<count {
handle := threads[i+k].win32_thread
if handle != win32.INVALID_HANDLE {
handles[j] = handle
j += 1
}
}
win32.WaitForMultipleObjects(u32(j), &handles[0], true, win32.INFINITE)
}
for t in threads {
win32.CloseHandle(t.win32_thread)
t.win32_thread = win32.INVALID_HANDLE
}
}
_destroy :: proc(thread: ^Thread) {
_join(thread)
free(thread, thread.creation_allocator)
}
_terminate :: proc(using thread : ^Thread, exit_code: int) {
win32.TerminateThread(win32_thread, u32(exit_code))
}
_yield :: proc() {
win32.SwitchToThread()
}
|