1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
|
//+vet !using-stmt !using-param
package main
import "core:fmt"
import "core:mem"
import "core:os"
import "core:thread"
import "core:time"
import "core:reflect"
import "core:runtime"
import "core:intrinsics"
import "core:math/big"
/*
Odin is a general-purpose programming language with distinct typing built
for high performance, modern systems and data-oriented programming.
Odin is the C alternative for the Joy of Programming.
# Installing Odin
Getting Started - https://odin-lang.org/docs/install/
Instructions for downloading and install the Odin compiler and libraries.
# Learning Odin
Getting Started - https://odin-lang.org/docs/install/
Getting Started with Odin. Downloading, installing, and getting your
first program to compile and run.
Overview of Odin - https://odin-lang.org/docs/overview/
An overview of the Odin programming language and its features.
Frequently Asked Questions (FAQ) - https://odin-lang.org/docs/faq/
Answers to common questions about Odin.
Packages - https://pkg.odin-lang.org/
Documentation for all the official packages part of the
core and vendor library collections.
Nightly Builds - https://odin-lang.org/docs/nightly/
Get the latest nightly builds of Odin.
More Odin Examples - https://github.com/odin-lang/examples
This repository contains examples of how certain things can be accomplished
in idiomatic Odin, allowing you learn its semantics, as well as how to use
parts of the core and vendor package collections.
*/
the_basics :: proc() {
fmt.println("\n# the basics")
{ // The Basics
// os.args holds the path to the current executable and any arguments passed to it.
if len(os.args) == 1 {
fmt.printf("Hellope from %v.\n", os.args[0])
} else {
fmt.printf("%v, %v! from %v.\n", os.args[1], os.args[2], os.args[0])
}
// Lexical elements and literals
// A comment
my_integer_variable: int // A comment for documentaton
// Multi-line comments begin with /* and end with */. Multi-line comments can
// also be nested (unlike in C):
/*
You can have any text or code here and
have it be commented.
/*
NOTE: comments can be nested!
*/
*/
// String literals are enclosed in double quotes and character literals in single quotes.
// Special characters are escaped with a backslash \
some_string := "This is a string"
_ = 'A' // unicode codepoint literal
_ = '\n'
_ = "C:\\Windows\\notepad.exe"
// Raw string literals are enclosed with single back ticks
_ = `C:\Windows\notepad.exe`
// The length of a string in bytes can be found using the built-in `len` procedure:
_ = len("Foo")
_ = len(some_string)
// Numbers
// Numerical literals are written similar to most other programming languages.
// A useful feature in Odin is that underscores are allowed for better
// readability: 1_000_000_000 (one billion). A number that contains a dot is a
// floating point literal: 1.0e9 (one billion). If a number literal is suffixed
// with i, is an imaginary number literal: 2i (2 multiply the square root of -1).
// Binary literals are prefixed with 0b, octal literals with 0o, and hexadecimal
// literals 0x. A leading zero does not produce an octal constant (unlike C).
// In Odin, if a numeric constant can be represented by a type without
// precision loss, it will automatically convert to that type.
x: int = 1.0 // A float literal but it can be represented by an integer without precision loss
// Constant literals are “untyped” which means that they can implicitly convert to a type.
y: int // `y` is typed of type `int`
y = 1 // `1` is an untyped integer literal which can implicitly convert to `int`
z: f64 // `z` is typed of type `f64` (64-bit floating point number)
z = 1 // `1` is an untyped integer literal which can be implicitly converted to `f64`
// No need for any suffixes or decimal places like in other languages
// (with the exception of negative zero, which must be given as `-0.0`)
// CONSTANTS JUST WORK!!!
// Assignment statements
h: int = 123 // declares a new variable `h` with type `int` and assigns a value to it
h = 637 // assigns a new value to `h`
// `=` is the assignment operator
// You can assign multiple variables with it:
a, b := 1, "hello" // declares `a` and `b` and infers the types from the assignments
b, a = "byte", 0
// Note: `:=` is two tokens, `:` and `=`. The following are equivalent,
/*
i: int = 123
i: = 123
i := 123
*/
// Constant declarations
// Constants are entities (symbols) which have an assigned value.
// The constant’s value cannot be changed.
// The constant’s value must be able to be evaluated at compile time:
X :: "what" // constant `X` has the untyped string value "what"
// Constants can be explicitly typed like a variable declaration:
Y : int : 123
Z :: Y + 7 // constant computations are possible
_ = my_integer_variable
_ = x
}
}
control_flow :: proc() {
fmt.println("\n# control flow")
{ // Control flow
// For loop
// Odin has only one loop statement, the `for` loop
// Basic for loop
for i := 0; i < 10; i += 1 {
fmt.println(i)
}
// NOTE: Unlike other languages like C, there are no parentheses `( )` surrounding the three components.
// Braces `{ }` or a `do` are always required
for i := 0; i < 10; i += 1 { }
// for i := 0; i < 10; i += 1 do fmt.print()
// The initial and post statements are optional
i := 0
for ; i < 10; {
i += 1
}
// These semicolons can be dropped. This `for` loop is equivalent to C's `while` loop
i = 0
for i < 10 {
i += 1
}
// If the condition is omitted, an infinite loop is produced:
for {
break
}
// Range-based for loop
// The basic for loop
for j := 0; j < 10; j += 1 {
fmt.println(j)
}
// can also be written
for j in 0..<10 {
fmt.println(j)
}
for j in 0..=9 {
fmt.println(j)
}
// Certain built-in types can be iterated over
some_string := "Hello, 世界"
for character in some_string { // Strings are assumed to be UTF-8
fmt.println(character)
}
some_array := [3]int{1, 4, 9}
for value in some_array {
fmt.println(value)
}
some_slice := []int{1, 4, 9}
for value in some_slice {
fmt.println(value)
}
some_dynamic_array := [dynamic]int{1, 4, 9}
defer delete(some_dynamic_array)
for value in some_dynamic_array {
fmt.println(value)
}
some_map := map[string]int{"A" = 1, "C" = 9, "B" = 4}
defer delete(some_map)
for key in some_map {
fmt.println(key)
}
// Alternatively a second index value can be added
for character, index in some_string {
fmt.println(index, character)
}
for value, index in some_array {
fmt.println(index, value)
}
for value, index in some_slice {
fmt.println(index, value)
}
for value, index in some_dynamic_array {
fmt.println(index, value)
}
for key, value in some_map {
fmt.println(key, value)
}
// The iterated values are copies and cannot be written to.
// The following idiom is useful for iterating over a container in a by-reference manner:
for _, idx in some_slice {
some_slice[idx] = (idx+1)*(idx+1)
}
// If statements
x := 123
if x >= 0 {
fmt.println("x is positive")
}
if y := -34; y < 0 {
fmt.println("y is negative")
}
if y := 123; y < 0 {
fmt.println("y is negative")
} else if y == 0 {
fmt.println("y is zero")
} else {
fmt.println("y is positive")
}
// Switch statement
// A switch statement is another way to write a sequence of if-else statements.
// In Odin, the default case is denoted as a case without any expression.
#partial switch arch := ODIN_ARCH; arch {
case .i386:
fmt.println("32-bit")
case .amd64:
fmt.println("64-bit")
case: // default
fmt.println("Unsupported architecture")
}
// Odin’s `switch` is like one in C or C++, except that Odin only runs the selected case.
// This means that a `break` statement is not needed at the end of each case.
// Another important difference is that the case values need not be integers nor constants.
// To achieve a C-like fall through into the next case block, the keyword `fallthrough` can be used.
one_angry_dwarf :: proc() -> int {
fmt.println("one_angry_dwarf was called")
return 1
}
switch j := 0; j {
case 0:
case one_angry_dwarf():
}
// A switch statement without a condition is the same as `switch true`.
// This can be used to write a clean and long if-else chain and have the
// ability to break if needed
switch {
case x < 0:
fmt.println("x is negative")
case x == 0:
fmt.println("x is zero")
case:
fmt.println("x is positive")
}
// A `switch` statement can also use ranges like a range-based loop:
switch c := 'j'; c {
case 'A'..='Z', 'a'..='z', '0'..='9':
fmt.println("c is alphanumeric")
}
switch x {
case 0..<10:
fmt.println("units")
case 10..<13:
fmt.println("pre-teens")
case 13..<20:
fmt.println("teens")
case 20..<30:
fmt.println("twenties")
}
}
{ // Defer statement
// A defer statement defers the execution of a statement until the end of
// the scope it is in.
// The following will print 4 then 234:
{
x := 123
defer fmt.println(x)
{
defer x = 4
x = 2
}
fmt.println(x)
x = 234
}
// You can defer an entire block too:
{
bar :: proc() {}
defer {
fmt.println("1")
fmt.println("2")
}
cond := false
defer if cond {
bar()
}
}
// Defer statements are executed in the reverse order that they were declared:
{
defer fmt.println("1")
defer fmt.println("2")
defer fmt.println("3")
}
// Will print 3, 2, and then 1.
if false {
f, err := os.open("my_file.txt")
if err != os.ERROR_NONE {
// handle error
}
defer os.close(f)
// rest of code
}
}
{ // When statement
/*
The when statement is almost identical to the if statement but with some differences:
* Each condition must be a constant expression as a when
statement is evaluated at compile time.
* The statements within a branch do not create a new scope
* The compiler checks the semantics and code only for statements
that belong to the first condition that is true
* An initial statement is not allowed in a when statement
* when statements are allowed at file scope
*/
// Example
when ODIN_ARCH == .i386 {
fmt.println("32 bit")
} else when ODIN_ARCH == .amd64 {
fmt.println("64 bit")
} else {
fmt.println("Unknown architecture")
}
// The when statement is very useful for writing platform specific code.
// This is akin to the #if construct in C’s preprocessor however, in Odin,
// it is type checked.
}
{ // Branch statements
cond, cond1, cond2 := false, false, false
one_step :: proc() { fmt.println("one_step") }
beyond :: proc() { fmt.println("beyond") }
// Break statement
for cond {
switch {
case:
if cond {
break // break out of the `switch` statement
}
}
break // break out of the `for` statement
}
loop: for cond1 {
for cond2 {
break loop // leaves both loops
}
}
// Continue statement
for cond {
if cond2 {
continue
}
fmt.println("Hellope")
}
// Fallthrough statement
// Odin’s switch is like one in C or C++, except that Odin only runs the selected
// case. This means that a break statement is not needed at the end of each case.
// Another important difference is that the case values need not be integers nor
// constants.
// fallthrough can be used to explicitly fall through into the next case block:
switch i := 0; i {
case 0:
one_step()
fallthrough
case 1:
beyond()
}
}
}
named_proc_return_parameters :: proc() {
fmt.println("\n# named proc return parameters")
foo0 :: proc() -> int {
return 123
}
foo1 :: proc() -> (a: int) {
a = 123
return
}
foo2 :: proc() -> (a, b: int) {
// Named return values act like variables within the scope
a = 321
b = 567
return b, a
}
fmt.println("foo0 =", foo0()) // 123
fmt.println("foo1 =", foo1()) // 123
fmt.println("foo2 =", foo2()) // 567 321
}
variadic_procedures :: proc() {
fmt.println("\n# variadic procedures")
sum :: proc(nums: ..int, init_value:= 0) -> (result: int) {
result = init_value
for n in nums {
result += n
}
return
}
fmt.println("sum(()) =", sum())
fmt.println("sum(1, 2) =", sum(1, 2))
fmt.println("sum(1, 2, 3, 4, 5) =", sum(1, 2, 3, 4, 5))
fmt.println("sum(1, 2, 3, 4, 5, init_value = 5) =", sum(1, 2, 3, 4, 5, init_value = 5))
// pass a slice as varargs
odds := []int{1, 3, 5}
fmt.println("odds =", odds)
fmt.println("sum(..odds) =", sum(..odds))
fmt.println("sum(..odds, init_value = 5) =", sum(..odds, init_value = 5))
}
explicit_procedure_overloading :: proc() {
fmt.println("\n# explicit procedure overloading")
add_ints :: proc(a, b: int) -> int {
x := a + b
fmt.println("add_ints", x)
return x
}
add_floats :: proc(a, b: f32) -> f32 {
x := a + b
fmt.println("add_floats", x)
return x
}
add_numbers :: proc(a: int, b: f32, c: u8) -> int {
x := int(a) + int(b) + int(c)
fmt.println("add_numbers", x)
return x
}
add :: proc{add_ints, add_floats, add_numbers}
add(int(1), int(2))
add(f32(1), f32(2))
add(int(1), f32(2), u8(3))
add(1, 2) // untyped ints coerce to int tighter than f32
add(1.0, 2.0) // untyped floats coerce to f32 tighter than int
add(1, 2, 3) // three parameters
// Ambiguous answers
// add(1.0, 2)
// add(1, 2.0)
}
struct_type :: proc() {
fmt.println("\n# struct type")
// A struct is a record type in Odin. It is a collection of fields.
// Struct fields are accessed by using a dot:
{
Vector2 :: struct {
x: f32,
y: f32,
}
v := Vector2{1, 2}
v.x = 4
fmt.println(v.x)
// Struct fields can be accessed through a struct pointer:
v = Vector2{1, 2}
p := &v
p.x = 1335
fmt.println(v)
// We could write p^.x, however, it is to nice abstract the ability
// to not explicitly dereference the pointer. This is very useful when
// refactoring code to use a pointer rather than a value, and vice versa.
}
{
// A struct literal can be denoted by providing the struct’s type
// followed by {}. A struct literal must either provide all the
// arguments or none:
Vector3 :: struct {
x, y, z: f32,
}
v: Vector3
v = Vector3{} // Zero value
v = Vector3{1, 4, 9}
// You can list just a subset of the fields if you specify the
// field by name (the order of the named fields does not matter):
v = Vector3{z=1, y=2}
assert(v.x == 0)
assert(v.y == 2)
assert(v.z == 1)
}
{
// Structs can tagged with different memory layout and alignment requirements:
a :: struct #align(4) {} // align to 4 bytes
b :: struct #packed {} // remove padding between fields
c :: struct #raw_union {} // all fields share the same offset (0). This is the same as C's union
}
}
union_type :: proc() {
fmt.println("\n# union type")
{
val: union{int, bool}
val = 137
if i, ok := val.(int); ok {
fmt.println(i)
}
val = true
fmt.println(val)
val = nil
switch v in val {
case int: fmt.println("int", v)
case bool: fmt.println("bool", v)
case: fmt.println("nil")
}
}
{
// There is a duality between `any` and `union`
// An `any` has a pointer to the data and allows for any type (open)
// A `union` has as binary blob to store the data and allows only certain types (closed)
// The following code is with `any` but has the same syntax
val: any
val = 137
if i, ok := val.(int); ok {
fmt.println(i)
}
val = true
fmt.println(val)
val = nil
switch v in val {
case int: fmt.println("int", v)
case bool: fmt.println("bool", v)
case: fmt.println("nil")
}
}
Vector3 :: distinct [3]f32
Quaternion :: distinct quaternion128
// More realistic examples
{
// NOTE(bill): For the above basic examples, you may not have any
// particular use for it. However, my main use for them is not for these
// simple cases. My main use is for hierarchical types. Many prefer
// subtyping, embedding the base data into the derived types. Below is
// an example of this for a basic game Entity.
Entity :: struct {
id: u64,
name: string,
position: Vector3,
orientation: Quaternion,
derived: any,
}
Frog :: struct {
using entity: Entity,
jump_height: f32,
}
Monster :: struct {
using entity: Entity,
is_robot: bool,
is_zombie: bool,
}
// See `parametric_polymorphism` procedure for details
new_entity :: proc($T: typeid) -> ^Entity {
t := new(T)
t.derived = t^
return t
}
entity := new_entity(Monster)
switch e in entity.derived {
case Frog:
fmt.println("Ribbit")
case Monster:
if e.is_robot { fmt.println("Robotic") }
if e.is_zombie { fmt.println("Grrrr!") }
fmt.println("I'm a monster")
}
}
{
// NOTE(bill): A union can be used to achieve something similar. Instead
// of embedding the base data into the derived types, the derived data
// in embedded into the base type. Below is the same example of the
// basic game Entity but using an union.
Entity :: struct {
id: u64,
name: string,
position: Vector3,
orientation: Quaternion,
derived: union {Frog, Monster},
}
Frog :: struct {
using entity: ^Entity,
jump_height: f32,
}
Monster :: struct {
using entity: ^Entity,
is_robot: bool,
is_zombie: bool,
}
// See `parametric_polymorphism` procedure for details
new_entity :: proc($T: typeid) -> ^Entity {
t := new(Entity)
t.derived = T{entity = t}
return t
}
entity := new_entity(Monster)
switch e in entity.derived {
case Frog:
fmt.println("Ribbit")
case Monster:
if e.is_robot { fmt.println("Robotic") }
if e.is_zombie { fmt.println("Grrrr!") }
}
// NOTE(bill): As you can see, the usage code has not changed, only its
// memory layout. Both approaches have their own advantages but they can
// be used together to achieve different results. The subtyping approach
// can allow for a greater control of the memory layout and memory
// allocation, e.g. storing the derivatives together. However, this is
// also its disadvantage. You must either preallocate arrays for each
// derivative separation (which can be easily missed) or preallocate a
// bunch of "raw" memory; determining the maximum size of the derived
// types would require the aid of metaprogramming. Unions solve this
// particular problem as the data is stored with the base data.
// Therefore, it is possible to preallocate, e.g. [100]Entity.
// It should be noted that the union approach can have the same memory
// layout as the any and with the same type restrictions by using a
// pointer type for the derivatives.
/*
Entity :: struct {
...
derived: union{^Frog, ^Monster},
}
Frog :: struct {
using entity: Entity,
...
}
Monster :: struct {
using entity: Entity,
...
}
new_entity :: proc(T: type) -> ^Entity {
t := new(T)
t.derived = t
return t
}
*/
}
}
using_statement :: proc() {
fmt.println("\n# using statement")
// using can used to bring entities declared in a scope/namespace
// into the current scope. This can be applied to import names, struct
// fields, procedure fields, and struct values.
Vector3 :: struct{x, y, z: f32}
{
Entity :: struct {
position: Vector3,
orientation: quaternion128,
}
// It can used like this:
foo0 :: proc(entity: ^Entity) {
fmt.println(entity.position.x, entity.position.y, entity.position.z)
}
// The entity members can be brought into the procedure scope by using it:
foo1 :: proc(entity: ^Entity) {
using entity
fmt.println(position.x, position.y, position.z)
}
// The using can be applied to the parameter directly:
foo2 :: proc(using entity: ^Entity) {
fmt.println(position.x, position.y, position.z)
}
// It can also be applied to sub-fields:
foo3 :: proc(entity: ^Entity) {
using entity.position
fmt.println(x, y, z)
}
}
{
// We can also apply the using statement to the struct fields directly,
// making all the fields of position appear as if they on Entity itself:
Entity :: struct {
using position: Vector3,
orientation: quaternion128,
}
foo :: proc(entity: ^Entity) {
fmt.println(entity.x, entity.y, entity.z)
}
// Subtype polymorphism
// It is possible to get subtype polymorphism, similar to inheritance-like
// functionality in C++, but without the requirement of vtables or unknown
// struct layout:
Colour :: struct {r, g, b, a: u8}
Frog :: struct {
ribbit_volume: f32,
using entity: Entity,
colour: Colour,
}
frog: Frog
// Both work
foo(&frog.entity)
foo(&frog)
frog.x = 123
// Note: using can be applied to arbitrarily many things, which allows
// the ability to have multiple subtype polymorphism (but also its issues).
// Note: using’d fields can still be referred by name.
}
}
implicit_context_system :: proc() {
fmt.println("\n# implicit context system")
// In each scope, there is an implicit value named context. This
// context variable is local to each scope and is implicitly passed
// by pointer to any procedure call in that scope (if the procedure
// has the Odin calling convention).
// The main purpose of the implicit context system is for the ability
// to intercept third-party code and libraries and modify their
// functionality. One such case is modifying how a library allocates
// something or logs something. In C, this was usually achieved with
// the library defining macros which could be overridden so that the
// user could define what he wanted. However, not many libraries
// supported this in many languages by default which meant intercepting
// third-party code to see what it does and to change how it does it is
// not possible.
c := context // copy the current scope's context
context.user_index = 456
{
context.allocator = my_custom_allocator()
context.user_index = 123
what_a_fool_believes() // the `context` for this scope is implicitly passed to `what_a_fool_believes`
}
// `context` value is local to the scope it is in
assert(context.user_index == 456)
what_a_fool_believes :: proc() {
c := context // this `context` is the same as the parent procedure that it was called from
// From this example, context.user_index == 123
// An context.allocator is assigned to the return value of `my_custom_allocator()`
assert(context.user_index == 123)
// The memory management procedure use the `context.allocator` by
// default unless explicitly specified otherwise
china_grove := new(int)
free(china_grove)
_ = c
}
my_custom_allocator :: mem.nil_allocator
_ = c
// By default, the context value has default values for its parameters which is
// decided in the package runtime. What the defaults are are compiler specific.
// To see what the implicit context value contains, please see the following
// definition in package runtime.
}
parametric_polymorphism :: proc() {
fmt.println("\n# parametric polymorphism")
print_value :: proc(value: $T) {
fmt.printf("print_value: %T %v\n", value, value)
}
v1: int = 1
v2: f32 = 2.1
v3: f64 = 3.14
v4: string = "message"
print_value(v1)
print_value(v2)
print_value(v3)
print_value(v4)
fmt.println()
add :: proc(p, q: $T) -> T {
x: T = p + q
return x
}
a := add(3, 4)
fmt.printf("a: %T = %v\n", a, a)
b := add(3.2, 4.3)
fmt.printf("b: %T = %v\n", b, b)
// This is how `new` is implemented
alloc_type :: proc($T: typeid) -> ^T {
t := cast(^T)alloc(size_of(T), align_of(T))
t^ = T{} // Use default initialization value
return t
}
copy_slice :: proc(dst, src: []$T) -> int {
n := min(len(dst), len(src))
if n > 0 {
mem.copy(&dst[0], &src[0], n*size_of(T))
}
return n
}
double_params :: proc(a: $A, b: $B) -> A {
return a + A(b)
}
fmt.println(double_params(12, 1.345))
{ // Polymorphic Types and Type Specialization
Table_Slot :: struct($Key, $Value: typeid) {
occupied: bool,
hash: u32,
key: Key,
value: Value,
}
TABLE_SIZE_MIN :: 32
Table :: struct($Key, $Value: typeid) {
count: int,
allocator: mem.Allocator,
slots: []Table_Slot(Key, Value),
}
// Only allow types that are specializations of a (polymorphic) slice
make_slice :: proc($T: typeid/[]$E, len: int) -> T {
return make(T, len)
}
// Only allow types that are specializations of `Table`
allocate :: proc(table: ^$T/Table, capacity: int) {
c := context
if table.allocator.procedure != nil {
c.allocator = table.allocator
}
context = c
table.slots = make_slice(type_of(table.slots), max(capacity, TABLE_SIZE_MIN))
}
expand :: proc(table: ^$T/Table) {
c := context
if table.allocator.procedure != nil {
c.allocator = table.allocator
}
context = c
old_slots := table.slots
defer delete(old_slots)
cap := max(2*len(table.slots), TABLE_SIZE_MIN)
allocate(table, cap)
for s in old_slots {
if s.occupied {
put(table, s.key, s.value)
}
}
}
// Polymorphic determination of a polymorphic struct
// put :: proc(table: ^$T/Table, key: T.Key, value: T.Value) {
put :: proc(table: ^Table($Key, $Value), key: Key, value: Value) {
hash := get_hash(key) // Ad-hoc method which would fail in a different scope
index := find_index(table, key, hash)
if index < 0 {
if f64(table.count) >= 0.75*f64(len(table.slots)) {
expand(table)
}
assert(table.count <= len(table.slots))
index = int(hash % u32(len(table.slots)))
for table.slots[index].occupied {
if index += 1; index >= len(table.slots) {
index = 0
}
}
table.count += 1
}
slot := &table.slots[index]
slot.occupied = true
slot.hash = hash
slot.key = key
slot.value = value
}
// find :: proc(table: ^$T/Table, key: T.Key) -> (T.Value, bool) {
find :: proc(table: ^Table($Key, $Value), key: Key) -> (Value, bool) {
hash := get_hash(key)
index := find_index(table, key, hash)
if index < 0 {
return Value{}, false
}
return table.slots[index].value, true
}
find_index :: proc(table: ^Table($Key, $Value), key: Key, hash: u32) -> int {
if len(table.slots) <= 0 {
return -1
}
index := int(hash % u32(len(table.slots)))
for table.slots[index].occupied {
if table.slots[index].hash == hash {
if table.slots[index].key == key {
return index
}
}
if index += 1; index >= len(table.slots) {
index = 0
}
}
return -1
}
get_hash :: proc(s: string) -> u32 { // fnv32a
h: u32 = 0x811c9dc5
for i in 0..<len(s) {
h = (h ~ u32(s[i])) * 0x01000193
}
return h
}
table: Table(string, int)
for i in 0..=36 { put(&table, "Hellope", i) }
for i in 0..=42 { put(&table, "World!", i) }
found, _ := find(&table, "Hellope")
fmt.printf("`found` is %v\n", found)
found, _ = find(&table, "World!")
fmt.printf("`found` is %v\n", found)
// I would not personally design a hash table like this in production
// but this is a nice basic example
// A better approach would either use a `u64` or equivalent for the key
// and let the user specify the hashing function or make the user store
// the hashing procedure with the table
}
{ // Parametric polymorphic union
Error :: enum {
Foo0,
Foo1,
Foo2,
Foo3,
}
Para_Union :: union($T: typeid) {T, Error}
r: Para_Union(int)
fmt.println(typeid_of(type_of(r)))
fmt.println(r)
r = 123
fmt.println(r)
r = Error.Foo0 // r = .Foo0 is allow too, see implicit selector expressions below
fmt.println(r)
}
{ // Polymorphic names
foo :: proc($N: $I, $T: typeid) -> (res: [N]T) {
// `N` is the constant value passed
// `I` is the type of N
// `T` is the type passed
fmt.printf("Generating an array of type %v from the value %v of type %v\n",
typeid_of(type_of(res)), N, typeid_of(I))
for i in 0..<N {
res[i] = T(i*i)
}
return
}
T :: int
array := foo(4, T)
for v, i in array {
assert(v == T(i*i))
}
// Matrix multiplication
mul :: proc(a: [$M][$N]$T, b: [N][$P]T) -> (c: [M][P]T) {
for i in 0..<M {
for j in 0..<P {
for k in 0..<N {
c[i][j] += a[i][k] * b[k][j]
}
}
}
return
}
x := [2][3]f32{
{1, 2, 3},
{3, 2, 1},
}
y := [3][2]f32{
{0, 8},
{6, 2},
{8, 4},
}
z := mul(x, y)
assert(z == {{36, 24}, {20, 32}})
}
}
prefix_table := [?]string{
"White",
"Red",
"Green",
"Blue",
"Octarine",
"Black",
}
print_mutex := b64(false)
threading_example :: proc() {
fmt.println("\n# threading_example")
did_acquire :: proc(m: ^b64) -> (acquired: bool) {
res, ok := intrinsics.atomic_compare_exchange_strong(m, false, true)
return ok && res == false
}
{ // Basic Threads
fmt.println("\n## Basic Threads")
worker_proc :: proc(t: ^thread.Thread) {
for iteration in 1..=5 {
fmt.printf("Thread %d is on iteration %d\n", t.user_index, iteration)
fmt.printf("`%s`: iteration %d\n", prefix_table[t.user_index], iteration)
time.sleep(1 * time.Millisecond)
}
}
threads := make([dynamic]^thread.Thread, 0, len(prefix_table))
defer delete(threads)
for _ in prefix_table {
if t := thread.create(worker_proc); t != nil {
t.init_context = context
t.user_index = len(threads)
append(&threads, t)
thread.start(t)
}
}
for len(threads) > 0 {
for i := 0; i < len(threads); /**/ {
if t := threads[i]; thread.is_done(t) {
fmt.printf("Thread %d is done\n", t.user_index)
thread.destroy(t)
ordered_remove(&threads, i)
} else {
i += 1
}
}
}
}
{ // Thread Pool
fmt.println("\n## Thread Pool")
task_proc :: proc(t: thread.Task) {
index := t.user_index % len(prefix_table)
for iteration in 1..=5 {
for !did_acquire(&print_mutex) { thread.yield() } // Allow one thread to print at a time.
fmt.printf("Worker Task %d is on iteration %d\n", t.user_index, iteration)
fmt.printf("`%s`: iteration %d\n", prefix_table[index], iteration)
print_mutex = false
time.sleep(1 * time.Millisecond)
}
}
N :: 3
pool: thread.Pool
thread.pool_init(&pool, allocator=context.allocator, thread_count=N)
defer thread.pool_destroy(&pool)
for i in 0..<30 {
// be mindful of the allocator used for tasks. The allocator needs to be thread safe, or be owned by the task for exclusive use
thread.pool_add_task(&pool, allocator=context.allocator, procedure=task_proc, data=nil, user_index=i)
}
thread.pool_start(&pool)
{
// Wait a moment before we cancel a thread
time.sleep(5 * time.Millisecond)
// Allow one thread to print at a time.
for !did_acquire(&print_mutex) { thread.yield() }
thread.terminate(pool.threads[N - 1], 0)
fmt.println("Canceled last thread")
print_mutex = false
}
thread.pool_finish(&pool)
}
}
array_programming :: proc() {
fmt.println("\n# array programming")
{
a := [3]f32{1, 2, 3}
b := [3]f32{5, 6, 7}
c := a * b
d := a + b
e := 1 + (c - d) / 2
fmt.printf("%.1f\n", e) // [0.5, 3.0, 6.5]
}
{
a := [3]f32{1, 2, 3}
b := swizzle(a, 2, 1, 0)
assert(b == [3]f32{3, 2, 1})
c := swizzle(a, 0, 0)
assert(c == [2]f32{1, 1})
assert(c == 1)
}
{
Vector3 :: distinct [3]f32
a := Vector3{1, 2, 3}
b := Vector3{5, 6, 7}
c := (a * b)/2 + 1
d := c.x + c.y + c.z
fmt.printf("%.1f\n", d) // 22.0
cross :: proc(a, b: Vector3) -> Vector3 {
i := swizzle(a, 1, 2, 0) * swizzle(b, 2, 0, 1)
j := swizzle(a, 2, 0, 1) * swizzle(b, 1, 2, 0)
return i - j
}
cross_shorter :: proc(a, b: Vector3) -> Vector3 {
i := a.yzx * b.zxy
j := a.zxy * b.yzx
return i - j
}
blah :: proc(a: Vector3) -> f32 {
return a.x + a.y + a.z
}
x := cross(a, b)
fmt.println(x)
fmt.println(blah(x))
}
}
map_type :: proc() {
fmt.println("\n# map type")
m := make(map[string]int)
defer delete(m)
m["Bob"] = 2
m["Ted"] = 5
fmt.println(m["Bob"])
delete_key(&m, "Ted")
// If an element of a key does not exist, the zero value of the
// element will be returned. To check to see if an element exists
// can be done in two ways:
elem, ok := m["Bob"]
exists := "Bob" in m
_, _ = elem, ok
_ = exists
}
implicit_selector_expression :: proc() {
fmt.println("\n# implicit selector expression")
Foo :: enum {A, B, C}
f: Foo
f = Foo.A
f = .A
BAR :: bit_set[Foo]{.B, .C}
switch f {
case .A:
fmt.println("HITHER")
case .B:
fmt.println("NEVER")
case .C:
fmt.println("FOREVER")
}
my_map := make(map[Foo]int)
defer delete(my_map)
my_map[.A] = 123
my_map[Foo.B] = 345
fmt.println(my_map[.A] + my_map[Foo.B] + my_map[.C])
}
partial_switch :: proc() {
fmt.println("\n# partial_switch")
{ // enum
Foo :: enum {
A,
B,
C,
D,
}
f := Foo.A
switch f {
case .A: fmt.println("A")
case .B: fmt.println("B")
case .C: fmt.println("C")
case .D: fmt.println("D")
case: fmt.println("?")
}
#partial switch f {
case .A: fmt.println("A")
case .D: fmt.println("D")
}
}
{ // union
Foo :: union {int, bool}
f: Foo = 123
switch _ in f {
case int: fmt.println("int")
case bool: fmt.println("bool")
case:
}
#partial switch _ in f {
case bool: fmt.println("bool")
}
}
}
cstring_example :: proc() {
fmt.println("\n# cstring_example")
W :: "Hellope"
X :: cstring(W)
Y :: string(X)
w := W
_ = w
x: cstring = X
y: string = Y
z := string(x)
fmt.println(x, y, z)
fmt.println(len(x), len(y), len(z))
fmt.println(len(W), len(X), len(Y))
// IMPORTANT NOTE for cstring variables
// len(cstring) is O(N)
// cast(string)cstring is O(N)
}
bit_set_type :: proc() {
fmt.println("\n# bit_set type")
{
Day :: enum {
Sunday,
Monday,
Tuesday,
Wednesday,
Thursday,
Friday,
Saturday,
}
Days :: distinct bit_set[Day]
WEEKEND :: Days{.Sunday, .Saturday}
d: Days
d = {.Sunday, .Monday}
e := d + WEEKEND
e += {.Monday}
fmt.println(d, e)
ok := .Saturday in e // `in` is only allowed for `map` and `bit_set` types
fmt.println(ok)
if .Saturday in e {
fmt.println("Saturday in", e)
}
X :: .Saturday in WEEKEND // Constant evaluation
fmt.println(X)
fmt.println("Cardinality:", card(e))
}
{
x: bit_set['A'..='Z']
#assert(size_of(x) == size_of(u32))
y: bit_set[0..=8; u16]
fmt.println(typeid_of(type_of(x))) // bit_set[A..=Z]
fmt.println(typeid_of(type_of(y))) // bit_set[0..=8; u16]
x += {'F'}
assert('F' in x)
x -= {'F'}
assert('F' not_in x)
y += {1, 4, 2}
assert(2 in y)
}
{
Letters :: bit_set['A'..='Z']
a := Letters{'A', 'B'}
b := Letters{'A', 'B', 'C', 'D', 'F'}
c := Letters{'A', 'B'}
assert(a <= b) // 'a' is a subset of 'b'
assert(b >= a) // 'b' is a superset of 'a'
assert(a < b) // 'a' is a strict subset of 'b'
assert(b > a) // 'b' is a strict superset of 'a'
assert(!(a < c)) // 'a' is a not strict subset of 'c'
assert(!(c > a)) // 'c' is a not strict superset of 'a'
}
}
deferred_procedure_associations :: proc() {
fmt.println("\n# deferred procedure associations")
@(deferred_out=closure)
open :: proc(s: string) -> bool {
fmt.println(s)
return true
}
closure :: proc(ok: bool) {
fmt.println("Goodbye?", ok)
}
if open("Welcome") {
fmt.println("Something in the middle, mate.")
}
}
reflection :: proc() {
fmt.println("\n# reflection")
Foo :: struct {
x: int `tag1`,
y: string `json:"y_field"`,
z: bool, // no tag
}
id := typeid_of(Foo)
names := reflect.struct_field_names(id)
types := reflect.struct_field_types(id)
tags := reflect.struct_field_tags(id)
assert(len(names) == len(types) && len(names) == len(tags))
fmt.println("Foo :: struct {")
for tag, i in tags {
name, type := names[i], types[i]
if tag != "" {
fmt.printf("\t%s: %T `%s`,\n", name, type, tag)
} else {
fmt.printf("\t%s: %T,\n", name, type)
}
}
fmt.println("}")
for tag, i in tags {
if val, ok := reflect.struct_tag_lookup(tag, "json"); ok {
fmt.printf("json: %s -> %s\n", names[i], val)
}
}
}
quaternions :: proc() {
// Not just an April Fool's Joke any more, but a fully working thing!
fmt.println("\n# quaternions")
{ // Quaternion operations
q := 1 + 2i + 3j + 4k
r := quaternion(5, 6, 7, 8)
t := q * r
fmt.printf("(%v) * (%v) = %v\n", q, r, t)
v := q / r
fmt.printf("(%v) / (%v) = %v\n", q, r, v)
u := q + r
fmt.printf("(%v) + (%v) = %v\n", q, r, u)
s := q - r
fmt.printf("(%v) - (%v) = %v\n", q, r, s)
}
{ // The quaternion types
q128: quaternion128 // 4xf32
q256: quaternion256 // 4xf64
q128 = quaternion(1, 0, 0, 0)
q256 = 1 // quaternion(1, 0, 0, 0)
}
{ // Built-in procedures
q := 1 + 2i + 3j + 4k
fmt.println("q =", q)
fmt.println("real(q) =", real(q))
fmt.println("imag(q) =", imag(q))
fmt.println("jmag(q) =", jmag(q))
fmt.println("kmag(q) =", kmag(q))
fmt.println("conj(q) =", conj(q))
fmt.println("abs(q) =", abs(q))
}
{ // Conversion of a complex type to a quaternion type
c := 1 + 2i
q := quaternion256(c)
fmt.println(c)
fmt.println(q)
}
{ // Memory layout of Quaternions
q := 1 + 2i + 3j + 4k
a := transmute([4]f64)q
fmt.println("Quaternion memory layout: xyzw/(ijkr)")
fmt.println(q) // 1.000+2.000i+3.000j+4.000k
fmt.println(a) // [2.000, 3.000, 4.000, 1.000]
}
}
unroll_for_statement :: proc() {
fmt.println("\n#'#unroll for' statements")
// '#unroll for' works the same as if the 'inline' prefix did not
// exist but these ranged loops are explicitly unrolled which can
// be very very useful for certain optimizations
fmt.println("Ranges")
#unroll for x, i in 1..<4 {
fmt.println(x, i)
}
fmt.println("Strings")
#unroll for r, i in "Hello, 世界" {
fmt.println(r, i)
}
fmt.println("Arrays")
#unroll for elem, idx in ([4]int{1, 4, 9, 16}) {
fmt.println(elem, idx)
}
Foo_Enum :: enum {
A = 1,
B,
C = 6,
D,
}
fmt.println("Enum types")
#unroll for elem, idx in Foo_Enum {
fmt.println(elem, idx)
}
}
where_clauses :: proc() {
fmt.println("\n#procedure 'where' clauses")
{ // Sanity checks
simple_sanity_check :: proc(x: [2]int)
where len(x) > 1,
type_of(x) == [2]int {
fmt.println(x)
}
}
{ // Parametric polymorphism checks
cross_2d :: proc(a, b: $T/[2]$E) -> E
where intrinsics.type_is_numeric(E) {
return a.x*b.y - a.y*b.x
}
cross_3d :: proc(a, b: $T/[3]$E) -> T
where intrinsics.type_is_numeric(E) {
x := a.y*b.z - a.z*b.y
y := a.z*b.x - a.x*b.z
z := a.x*b.y - a.y*b.z
return T{x, y, z}
}
a := [2]int{1, 2}
b := [2]int{5, -3}
fmt.println(cross_2d(a, b))
x := [3]f32{1, 4, 9}
y := [3]f32{-5, 0, 3}
fmt.println(cross_3d(x, y))
// Failure case
// i := [2]bool{true, false}
// j := [2]bool{false, true}
// fmt.println(cross_2d(i, j))
}
{ // Procedure groups usage
foo :: proc(x: [$N]int) -> bool
where N > 2 {
fmt.println(#procedure, "was called with the parameter", x)
return true
}
bar :: proc(x: [$N]int) -> bool
where 0 < N,
N <= 2 {
fmt.println(#procedure, "was called with the parameter", x)
return false
}
baz :: proc{foo, bar}
x := [3]int{1, 2, 3}
y := [2]int{4, 9}
ok_x := baz(x)
ok_y := baz(y)
assert(ok_x == true)
assert(ok_y == false)
}
{ // Record types
Foo :: struct($T: typeid, $N: int)
where intrinsics.type_is_integer(T),
N > 2 {
x: [N]T,
y: [N-2]T,
}
T :: i32
N :: 5
f: Foo(T, N)
#assert(size_of(f) == (N+N-2)*size_of(T))
}
}
when ODIN_OS == .Windows {
foreign import kernel32 "system:kernel32.lib"
}
foreign_system :: proc() {
fmt.println("\n#foreign system")
when ODIN_OS == .Windows {
// It is sometimes necessarily to interface with foreign code,
// such as a C library. In Odin, this is achieved through the
// foreign system. You can “import” a library into the code
// using the same semantics as a normal import declaration.
// This foreign import declaration will create a
// “foreign import name” which can then be used to associate
// entities within a foreign block.
foreign kernel32 {
ExitProcess :: proc "stdcall" (exit_code: u32) ---
}
// Foreign procedure declarations have the cdecl/c calling
// convention by default unless specified otherwise. Due to
// foreign procedures do not have a body declared within this
// code, you need append the --- symbol to the end to distinguish
// it as a procedure literal without a body and not a procedure type.
// The attributes system can be used to change specific properties
// of entities declared within a block:
@(default_calling_convention = "std")
foreign kernel32 {
@(link_name="GetLastError") get_last_error :: proc() -> i32 ---
}
// Example using the link_prefix attribute
@(default_calling_convention = "std")
@(link_prefix = "Get")
foreign kernel32 {
LastError :: proc() -> i32 ---
}
}
}
ranged_fields_for_array_compound_literals :: proc() {
fmt.println("\n#ranged fields for array compound literals")
{ // Normal Array Literal
foo := [?]int{1, 4, 9, 16}
fmt.println(foo)
}
{ // Indexed
foo := [?]int{
3 = 16,
1 = 4,
2 = 9,
0 = 1,
}
fmt.println(foo)
}
{ // Ranges
i := 2
foo := [?]int {
0 = 123,
5..=9 = 54,
10..<16 = i*3 + (i-1)*2,
}
#assert(len(foo) == 16)
fmt.println(foo) // [123, 0, 0, 0, 0, 54, 54, 54, 54, 54, 8, 8, 8, 8, 8]
}
{ // Slice and Dynamic Array support
i := 2
foo_slice := []int {
0 = 123,
5..=9 = 54,
10..<16 = i*3 + (i-1)*2,
}
assert(len(foo_slice) == 16)
fmt.println(foo_slice) // [123, 0, 0, 0, 0, 54, 54, 54, 54, 54, 8, 8, 8, 8, 8]
foo_dynamic_array := [dynamic]int {
0 = 123,
5..=9 = 54,
10..<16 = i*3 + (i-1)*2,
}
assert(len(foo_dynamic_array) == 16)
fmt.println(foo_dynamic_array) // [123, 0, 0, 0, 0, 54, 54, 54, 54, 54, 8, 8, 8, 8, 8]
}
}
deprecated_attribute :: proc() {
@(deprecated="Use foo_v2 instead")
foo_v1 :: proc(x: int) {
fmt.println("foo_v1")
}
foo_v2 :: proc(x: int) {
fmt.println("foo_v2")
}
// NOTE: Uncomment to see the warning messages
// foo_v1(1)
}
range_statements_with_multiple_return_values :: proc() {
fmt.println("\n#range statements with multiple return values")
My_Iterator :: struct {
index: int,
data: []i32,
}
make_my_iterator :: proc(data: []i32) -> My_Iterator {
return My_Iterator{data = data}
}
my_iterator :: proc(it: ^My_Iterator) -> (val: i32, idx: int, cond: bool) {
if cond = it.index < len(it.data); cond {
val = it.data[it.index]
idx = it.index
it.index += 1
}
return
}
data := make([]i32, 6)
for _, i in data {
data[i] = i32(i*i)
}
{ // Manual Style
it := make_my_iterator(data)
for {
val, _, cond := my_iterator(&it)
if !cond {
break
}
fmt.println(val)
}
}
{ // or_break
it := make_my_iterator(data)
loop: for {
val, _ := my_iterator(&it) or_break loop
fmt.println(val)
}
}
{ // first value
it := make_my_iterator(data)
for val in my_iterator(&it) {
fmt.println(val)
}
}
{ // first and second value
it := make_my_iterator(data)
for val, idx in my_iterator(&it) {
fmt.println(val, idx)
}
}
}
soa_struct_layout :: proc() {
fmt.println("\n#SOA Struct Layout")
{
Vector3 :: struct {x, y, z: f32}
N :: 2
v_aos: [N]Vector3
v_aos[0].x = 1
v_aos[0].y = 4
v_aos[0].z = 9
fmt.println(len(v_aos))
fmt.println(v_aos[0])
fmt.println(v_aos[0].x)
fmt.println(&v_aos[0].x)
v_aos[1] = {0, 3, 4}
v_aos[1].x = 2
fmt.println(v_aos[1])
fmt.println(v_aos)
v_soa: #soa[N]Vector3
v_soa[0].x = 1
v_soa[0].y = 4
v_soa[0].z = 9
// Same syntax as AOS and treat as if it was an array
fmt.println(len(v_soa))
fmt.println(v_soa[0])
fmt.println(v_soa[0].x)
fmt.println(&v_soa[0].x)
v_soa[1] = {0, 3, 4}
v_soa[1].x = 2
fmt.println(v_soa[1])
// Can use SOA syntax if necessary
v_soa.x[0] = 1
v_soa.y[0] = 4
v_soa.z[0] = 9
fmt.println(v_soa.x[0])
// Same pointer addresses with both syntaxes
assert(&v_soa[0].x == &v_soa.x[0])
// Same fmt printing
fmt.println(v_aos)
fmt.println(v_soa)
}
{
// Works with arrays of length <= 4 which have the implicit fields xyzw/rgba
Vector3 :: distinct [3]f32
N :: 2
v_aos: [N]Vector3
v_aos[0].x = 1
v_aos[0].y = 4
v_aos[0].z = 9
v_soa: #soa[N]Vector3
v_soa[0].x = 1
v_soa[0].y = 4
v_soa[0].z = 9
}
{
// SOA Slices
// Vector3 :: struct {x, y, z: f32}
Vector3 :: struct {x: i8, y: i16, z: f32}
N :: 3
v: #soa[N]Vector3
v[0].x = 1
v[0].y = 4
v[0].z = 9
s: #soa[]Vector3
s = v[:]
assert(len(s) == N)
fmt.println(s)
fmt.println(s[0].x)
a := s[1:2]
assert(len(a) == 1)
fmt.println(a)
d: #soa[dynamic]Vector3
append_soa(&d, Vector3{1, 2, 3}, Vector3{4, 5, 9}, Vector3{-4, -4, 3})
fmt.println(d)
fmt.println(len(d))
fmt.println(cap(d))
fmt.println(d[:])
}
{ // soa_zip and soa_unzip
fmt.println("\nsoa_zip and soa_unzip")
x := []i32{1, 3, 9}
y := []f32{2, 4, 16}
z := []b32{true, false, true}
// produce an #soa slice the normal slices passed
s := soa_zip(a=x, b=y, c=z)
// iterate over the #soa slice
for v, i in s {
fmt.println(v, i) // exactly the same as s[i]
// NOTE: 'v' is NOT a temporary value but has a specialized addressing mode
// which means that when accessing v.a etc, it does the correct transformation
// internally:
// s[i].a === s.a[i]
fmt.println(v.a, v.b, v.c)
}
// Recover the slices from the #soa slice
a, b, c := soa_unzip(s)
fmt.println(a, b, c)
}
}
constant_literal_expressions :: proc() {
fmt.println("\n#constant literal expressions")
Bar :: struct {x, y: f32}
Foo :: struct {a, b: int, using c: Bar}
FOO_CONST :: Foo{b = 2, a = 1, c = {3, 4}}
fmt.println(FOO_CONST.a)
fmt.println(FOO_CONST.b)
fmt.println(FOO_CONST.c)
fmt.println(FOO_CONST.c.x)
fmt.println(FOO_CONST.c.y)
fmt.println(FOO_CONST.x) // using works as expected
fmt.println(FOO_CONST.y)
fmt.println("-------")
ARRAY_CONST :: [3]int{1 = 4, 2 = 9, 0 = 1}
fmt.println(ARRAY_CONST[0])
fmt.println(ARRAY_CONST[1])
fmt.println(ARRAY_CONST[2])
fmt.println("-------")
FOO_ARRAY_DEFAULTS :: [3]Foo{{}, {}, {}}
fmt.println(FOO_ARRAY_DEFAULTS[2].x)
fmt.println("-------")
Baz :: enum{A=5, B, C, D}
ENUM_ARRAY_CONST :: [Baz]int{.A ..= .C = 1, .D = 16}
fmt.println(ENUM_ARRAY_CONST[.A])
fmt.println(ENUM_ARRAY_CONST[.B])
fmt.println(ENUM_ARRAY_CONST[.C])
fmt.println(ENUM_ARRAY_CONST[.D])
fmt.println("-------")
Sparse_Baz :: enum{A=5, B, C, D=16}
#assert(len(Sparse_Baz) < len(#sparse[Sparse_Baz]int))
SPARSE_ENUM_ARRAY_CONST :: #sparse[Sparse_Baz]int{.A ..= .C = 1, .D = 16}
fmt.println(SPARSE_ENUM_ARRAY_CONST[.A])
fmt.println(SPARSE_ENUM_ARRAY_CONST[.B])
fmt.println(SPARSE_ENUM_ARRAY_CONST[.C])
fmt.println(SPARSE_ENUM_ARRAY_CONST[.D])
fmt.println("-------")
STRING_CONST :: "Hellope!"
fmt.println(STRING_CONST[0])
fmt.println(STRING_CONST[2])
fmt.println(STRING_CONST[3])
fmt.println(STRING_CONST[0:5])
fmt.println(STRING_CONST[3:][:4])
}
union_maybe :: proc() {
fmt.println("\n#union based maybe")
// NOTE: This is already built-in, and this is just a reimplementation to explain the behaviour
Maybe :: union($T: typeid) {T}
i: Maybe(u8)
p: Maybe(^u8) // No tag is stored for pointers, nil is the sentinel value
// Tag size will be as small as needed for the number of variants
#assert(size_of(i) == size_of(u8) + size_of(u8))
// No need to store a tag here, the `nil` state is shared with the variant's `nil`
#assert(size_of(p) == size_of(^u8))
i = 123
x := i.?
y, y_ok := p.?
p = &x
z, z_ok := p.?
fmt.println(i, p)
fmt.println(x, &x)
fmt.println(y, y_ok)
fmt.println(z, z_ok)
}
dummy_procedure :: proc() {
fmt.println("dummy_procedure")
}
explicit_context_definition :: proc "c" () {
// Try commenting the following statement out below
context = runtime.default_context()
fmt.println("\n#explicit context definition")
dummy_procedure()
}
relative_data_types :: proc() {
fmt.println("\n#relative data types")
x: int = 123
ptr: #relative(i16) ^int
ptr = &x
fmt.println(ptr^)
arr := [3]int{1, 2, 3}
multi_ptr: #relative(i16) [^]int
multi_ptr = &arr[0]
fmt.println(multi_ptr)
fmt.println(multi_ptr[:3])
fmt.println(multi_ptr[1])
}
or_else_operator :: proc() {
fmt.println("\n#'or_else'")
{
m: map[string]int
i: int
ok: bool
if i, ok = m["hellope"]; !ok {
i = 123
}
// The above can be mapped to 'or_else'
i = m["hellope"] or_else 123
assert(i == 123)
}
{
// 'or_else' can be used with type assertions too, as they
// have optional ok semantics
v: union{int, f64}
i: int
i = v.(int) or_else 123
i = v.? or_else 123 // Type inference magic
assert(i == 123)
m: Maybe(int)
i = m.? or_else 456
assert(i == 456)
}
}
or_return_operator :: proc() {
fmt.println("\n#'or_return'")
// The concept of 'or_return' will work by popping off the end value in a multiple
// valued expression and checking whether it was not 'nil' or 'false', and if so,
// set the end return value to value if possible. If the procedure only has one
// return value, it will do a simple return. If the procedure had multiple return
// values, 'or_return' will require that all parameters be named so that the end
// value could be assigned to by name and then an empty return could be called.
Error :: enum {
None,
Something_Bad,
Something_Worse,
The_Worst,
Your_Mum,
}
caller_1 :: proc() -> Error {
return .None
}
caller_2 :: proc() -> (int, Error) {
return 123, .None
}
caller_3 :: proc() -> (int, int, Error) {
return 123, 345, .None
}
foo_1 :: proc() -> Error {
// This can be a common idiom in many code bases
n0, err := caller_2()
if err != nil {
return err
}
// The above idiom can be transformed into the following
n1 := caller_2() or_return
// And if the expression is 1-valued, it can be used like this
caller_1() or_return
// which is functionally equivalent to
if err1 := caller_1(); err1 != nil {
return err1
}
// Multiple return values still work with 'or_return' as it only
// pops off the end value in the multi-valued expression
n0, n1 = caller_3() or_return
return .None
}
foo_2 :: proc() -> (n: int, err: Error) {
// It is more common that your procedure turns multiple values
// If 'or_return' is used within a procedure multiple parameters (2+),
// then all the parameters must be named so that the remaining parameters
// so that a bare 'return' statement can be used
// This can be a common idiom in many code bases
x: int
x, err = caller_2()
if err != nil {
return
}
// The above idiom can be transformed into the following
y := caller_2() or_return
_ = y
// And if the expression is 1-valued, it can be used like this
caller_1() or_return
// which is functionally equivalent to
if err1 := caller_1(); err1 != nil {
err = err1
return
}
// If using a non-bare 'return' statement is required, setting the return values
// using the normal idiom is a better choice and clearer to read.
if z, zerr := caller_2(); zerr != nil {
return -345 * z, zerr
}
defer if err != nil {
fmt.println("Error in", #procedure, ":" , err)
}
n = 123
return
}
foo_1()
foo_2()
}
or_break_and_or_continue_operators :: proc() {
fmt.println("\n#'or_break' and 'or_continue'")
// The concept of 'or_break' and 'or_continue' is very similar to that of 'or_return'.
// The difference is that unlike 'or_return', the value does not get returned from
// the current procedure but rather discarded if it is 'false' or not 'nil', and then
// the specified branch (i.e. break or_continue).
// The or branch expression can be labelled if a specific statement needs to be used.
Error :: enum {
None,
Something_Bad,
Something_Worse,
The_Worst,
Your_Mum,
}
caller_1 :: proc() -> Error {
return .Something_Bad
}
caller_2 :: proc() -> (int, Error) {
return 123, .Something_Worse
}
caller_3 :: proc() -> (int, int, Error) {
return 123, 345, .None
}
for { // common approach
err := caller_1()
if err != nil {
break
}
}
for { // or_break approach
caller_1() or_break
}
for { // or_break approach with multiple values
n := caller_2() or_break
_ = n
}
loop: for { // or_break approach with named label
n := caller_2() or_break loop
_ = n
}
for { // or_continue
x, y := caller_3() or_continue
_, _ = x, y
break
}
continue_loop: for { // or_continue with named label
x, y := caller_3() or_continue continue_loop
_, _ = x, y
break
}
}
arbitrary_precision_mathematics :: proc() {
fmt.println("\n# core:math/big")
print_bigint :: proc(name: string, a: ^big.Int, base := i8(10), print_name := true, newline := true, print_extra_info := true) {
big.assert_if_nil(a)
as, err := big.itoa(a, base)
defer delete(as)
cb := big.internal_count_bits(a)
if print_name {
fmt.printf(name)
}
if err != nil {
fmt.printf(" (Error: %v) ", err)
}
fmt.printf(as)
if print_extra_info {
fmt.printf(" (base: %v, bits: %v, digits: %v)", base, cb, a.used)
}
if newline {
fmt.println()
}
}
a, b, c, d, e, f, res := &big.Int{}, &big.Int{}, &big.Int{}, &big.Int{}, &big.Int{}, &big.Int{}, &big.Int{}
defer big.destroy(a, b, c, d, e, f, res)
// How many bits should the random prime be?
bits := 64
// Number of Rabin-Miller trials, -1 for automatic.
trials := -1
// Default prime generation flags
flags := big.Primality_Flags{}
err := big.internal_random_prime(a, bits, trials, flags)
if err != nil {
fmt.printf("Error %v while generating random prime.\n", err)
} else {
print_bigint("Random Prime A: ", a, 10)
fmt.printf("Random number iterations until prime found: %v\n", big.RANDOM_PRIME_ITERATIONS_USED)
}
// If we want to pack this Int into a buffer of u32, how many do we need?
count := big.internal_int_pack_count(a, u32)
buf := make([]u32, count)
defer delete(buf)
written: int
written, err = big.internal_int_pack(a, buf)
fmt.printf("\nPacked into u32 buf: %v | err: %v | written: %v\n", buf, err, written)
// If we want to pack this Int into a buffer of bytes of which only the bottom 6 bits are used, how many do we need?
nails := 2
count = big.internal_int_pack_count(a, u8, nails)
byte_buf := make([]u8, count)
defer delete(byte_buf)
written, err = big.internal_int_pack(a, byte_buf, nails)
fmt.printf("\nPacked into buf of 6-bit bytes: %v | err: %v | written: %v\n", byte_buf, err, written)
// Pick another random big Int, not necesssarily prime.
err = big.random(b, 2048)
print_bigint("\n2048 bit random number: ", b)
// Calculate GCD + LCM in one fell swoop
big.gcd_lcm(c, d, a, b)
print_bigint("\nGCD of random prime A and random number B: ", c)
print_bigint("\nLCM of random prime A and random number B (in base 36): ", d, 36)
}
matrix_type :: proc() {
fmt.println("\n# matrix type")
// A matrix is a mathematical type built into Odin. It is a regular array of numbers,
// arranged in rows and columns
{
// The following represents a matrix that has 2 rows and 3 columns
m: matrix[2, 3]f32
m = matrix[2, 3]f32{
1, 9, -13,
20, 5, -6,
}
// Element types of integers, float, and complex numbers are supported by matrices.
// There is no support for booleans, quaternions, or any compound type.
// Indexing a matrix can be used with the matrix indexing syntax
// This mirrors othe type usages: type on the left, usage on the right
elem := m[1, 2] // row 1, column 2
assert(elem == -6)
// Scalars act as if they are scaled identity matrices
// and can be assigned to matrices as them
b := matrix[2, 2]f32{}
f := f32(3)
b = f
fmt.println("b", b)
fmt.println("b == f", b == f)
}
{ // Matrices support multiplication between matrices
a := matrix[2, 3]f32{
2, 3, 1,
4, 5, 0,
}
b := matrix[3, 2]f32{
1, 2,
3, 4,
5, 6,
}
fmt.println("a", a)
fmt.println("b", b)
c := a * b
#assert(type_of(c) == matrix[2, 2]f32)
fmt.tprintln("c = a * b", c)
}
{ // Matrices support multiplication between matrices and arrays
m := matrix[4, 4]f32{
1, 2, 3, 4,
5, 5, 4, 2,
0, 1, 3, 0,
0, 1, 4, 1,
}
v := [4]f32{1, 5, 4, 3}
// treating 'v' as a column vector
fmt.println("m * v", m * v)
// treating 'v' as a row vector
fmt.println("v * m", v * m)
// Support with non-square matrices
s := matrix[2, 4]f32{ // [4][2]f32
2, 4, 3, 1,
7, 8, 6, 5,
}
w := [2]f32{1, 2}
r: [4]f32 = w * s
fmt.println("r", r)
}
{ // Component-wise operations
// if the element type supports it
// Not support for '/', '%', or '%%' operations
a := matrix[2, 2]i32{
1, 2,
3, 4,
}
b := matrix[2, 2]i32{
-5, 1,
9, -7,
}
c0 := a + b
c1 := a - b
c2 := a & b
c3 := a | b
c4 := a ~ b
c5 := a &~ b
// component-wise multiplication
// since a * b would be a standard matrix multiplication
c6 := hadamard_product(a, b)
fmt.println("a + b", c0)
fmt.println("a - b", c1)
fmt.println("a & b", c2)
fmt.println("a | b", c3)
fmt.println("a ~ b", c4)
fmt.println("a &~ b", c5)
fmt.println("hadamard_product(a, b)", c6)
}
{ // Submatrix casting square matrices
// Casting a square matrix to another square matrix with same element type
// is supported.
// If the cast is to a smaller matrix type, the top-left submatrix is taken.
// If the cast is to a larger matrix type, the matrix is extended with zeros
// everywhere and ones in the diagonal for the unfilled elements of the
// extended matrix.
mat2 :: distinct matrix[2, 2]f32
mat4 :: distinct matrix[4, 4]f32
m2 := mat2{
1, 3,
2, 4,
}
m4 := mat4(m2)
assert(m4[2, 2] == 1)
assert(m4[3, 3] == 1)
fmt.printf("m2 %#v\n", m2)
fmt.println("m4", m4)
fmt.println("mat2(m4)", mat2(m4))
assert(mat2(m4) == m2)
b4 := mat4{
1, 2, 0, 0,
3, 4, 0, 0,
5, 0, 6, 0,
0, 7, 0, 8,
}
fmt.println("b4", matrix_flatten(b4))
}
{ // Casting non-square matrices
// Casting a matrix to another matrix is allowed as long as they share
// the same element type and the number of elements (rows*columns).
// Matrices in Odin are stored in column-major order, which means
// the casts will preserve this element order.
mat2x4 :: distinct matrix[2, 4]f32
mat4x2 :: distinct matrix[4, 2]f32
x := mat2x4{
1, 3, 5, 7,
2, 4, 6, 8,
}
y := mat4x2(x)
fmt.println("x", x)
fmt.println("y", y)
}
// TECHNICAL INFORMATION: the internal representation of a matrix in Odin is stored
// in column-major format
// e.g. matrix[2, 3]f32 is internally [3][2]f32 (with different a alignment requirement)
// Column-major is used in order to utilize (SIMD) vector instructions effectively on
// modern hardware, if possible.
//
// Unlike normal arrays, matrices try to maximize alignment to allow for the (SIMD) vectorization
// properties whilst keeping zero padding (either between columns or at the end of the type).
//
// Zero padding is a compromise for use with third-party libraries, instead of optimizing for performance.
// Padding between columns was not taken even if that would have allowed each column to be loaded
// individually into a SIMD register with the correct alignment properties.
//
// Currently, matrices are limited to a maximum of 16 elements (rows*columns), and a minimum of 1 element.
// This is because matrices are stored as values (not a reference type), and thus operations on them will
// be stored on the stack. Restricting the maximum element count minimizing the possibility of stack overflows.
// Built-in Procedures (Compiler Level)
// transpose(m)
// transposes a matrix
// outer_product(a, b)
// takes two array-like data types and returns the outer product
// of the values in a matrix
// hadamard_product(a, b)
// component-wise multiplication of two matrices of the same type
// matrix_flatten(m)
// converts the matrix into a flatten array of elements
// in column-major order
// Example:
// m := matrix[2, 2]f32{
// x0, x1,
// y0, y1,
// }
// array: [4]f32 = matrix_flatten(m)
// assert(array == {x0, y0, x1, y1})
// conj(x)
// conjugates the elements of a matrix for complex element types only
// Built-in Procedures (Runtime Level) (all square matrix procedures)
// determinant(m)
// adjugate(m)
// inverse(m)
// inverse_transpose(m)
// hermitian_adjoint(m)
// matrix_trace(m)
// matrix_minor(m)
}
main :: proc() {
/*
For More Odin Examples - https://github.com/odin-lang/examples
This repository contains examples of how certain things can be accomplished
in idiomatic Odin, allowing you learn its semantics, as well as how to use
parts of the core and vendor package collections.
*/
when true {
the_basics()
control_flow()
named_proc_return_parameters()
variadic_procedures()
explicit_procedure_overloading()
struct_type()
union_type()
using_statement()
implicit_context_system()
parametric_polymorphism()
array_programming()
map_type()
implicit_selector_expression()
partial_switch()
cstring_example()
bit_set_type()
deferred_procedure_associations()
reflection()
quaternions()
unroll_for_statement()
where_clauses()
foreign_system()
ranged_fields_for_array_compound_literals()
deprecated_attribute()
range_statements_with_multiple_return_values()
threading_example()
soa_struct_layout()
constant_literal_expressions()
union_maybe()
explicit_context_definition()
relative_data_types()
or_else_operator()
or_return_operator()
or_break_and_or_continue_operators()
arbitrary_precision_mathematics()
matrix_type()
}
}
|