1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
|
#include "tommath_private.h"
#ifdef S_MP_DIV_RECURSIVE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/*
Direct implementation of algorithms 1.8 "RecursiveDivRem" and 1.9 "UnbalancedDivision"
from:
Brent, Richard P., and Paul Zimmermann. "Modern computer arithmetic"
Vol. 18. Cambridge University Press, 2010
Available online at https://arxiv.org/pdf/1004.4710
pages 19ff. in the above online document.
*/
static mp_err s_recursion(const mp_int *a, const mp_int *b, mp_int *q, mp_int *r)
{
mp_err err;
mp_int A1, A2, B1, B0, Q1, Q0, R1, R0, t;
int m = a->used - b->used, k = m/2;
if (m < (MP_MUL_KARATSUBA_CUTOFF)) {
return s_mp_div_school(a, b, q, r);
}
if ((err = mp_init_multi(&A1, &A2, &B1, &B0, &Q1, &Q0, &R1, &R0, &t, NULL)) != MP_OKAY) {
goto LBL_ERR;
}
/* B1 = b / beta^k, B0 = b % beta^k*/
if ((err = mp_div_2d(b, k * MP_DIGIT_BIT, &B1, &B0)) != MP_OKAY) goto LBL_ERR;
/* (Q1, R1) = RecursiveDivRem(A / beta^(2k), B1) */
if ((err = mp_div_2d(a, 2*k * MP_DIGIT_BIT, &A1, &t)) != MP_OKAY) goto LBL_ERR;
if ((err = s_recursion(&A1, &B1, &Q1, &R1)) != MP_OKAY) goto LBL_ERR;
/* A1 = (R1 * beta^(2k)) + (A % beta^(2k)) - (Q1 * B0 * beta^k) */
if ((err = mp_lshd(&R1, 2*k)) != MP_OKAY) goto LBL_ERR;
if ((err = mp_add(&R1, &t, &A1)) != MP_OKAY) goto LBL_ERR;
if ((err = mp_mul(&Q1, &B0, &t)) != MP_OKAY) goto LBL_ERR;
if ((err = mp_lshd(&t, k)) != MP_OKAY) goto LBL_ERR;
if ((err = mp_sub(&A1, &t, &A1)) != MP_OKAY) goto LBL_ERR;
/* while A1 < 0 do Q1 = Q1 - 1, A1 = A1 + (beta^k * B) */
if (mp_cmp_d(&A1, 0uL) == MP_LT) {
if ((err = mp_mul_2d(b, k * MP_DIGIT_BIT, &t)) != MP_OKAY) goto LBL_ERR;
do {
if ((err = mp_decr(&Q1)) != MP_OKAY) goto LBL_ERR;
if ((err = mp_add(&A1, &t, &A1)) != MP_OKAY) goto LBL_ERR;
} while (mp_cmp_d(&A1, 0uL) == MP_LT);
}
/* (Q0, R0) = RecursiveDivRem(A1 / beta^(k), B1) */
if ((err = mp_div_2d(&A1, k * MP_DIGIT_BIT, &A1, &t)) != MP_OKAY) goto LBL_ERR;
if ((err = s_recursion(&A1, &B1, &Q0, &R0)) != MP_OKAY) goto LBL_ERR;
/* A2 = (R0*beta^k) + (A1 % beta^k) - (Q0*B0) */
if ((err = mp_lshd(&R0, k)) != MP_OKAY) goto LBL_ERR;
if ((err = mp_add(&R0, &t, &A2)) != MP_OKAY) goto LBL_ERR;
if ((err = mp_mul(&Q0, &B0, &t)) != MP_OKAY) goto LBL_ERR;
if ((err = mp_sub(&A2, &t, &A2)) != MP_OKAY) goto LBL_ERR;
/* while A2 < 0 do Q0 = Q0 - 1, A2 = A2 + B */
while (mp_cmp_d(&A2, 0uL) == MP_LT) {
if ((err = mp_decr(&Q0)) != MP_OKAY) goto LBL_ERR;
if ((err = mp_add(&A2, b, &A2)) != MP_OKAY) goto LBL_ERR;
}
/* return q = (Q1*beta^k) + Q0, r = A2 */
if ((err = mp_lshd(&Q1, k)) != MP_OKAY) goto LBL_ERR;
if ((err = mp_add(&Q1, &Q0, q)) != MP_OKAY) goto LBL_ERR;
if ((err = mp_copy(&A2, r)) != MP_OKAY) goto LBL_ERR;
LBL_ERR:
mp_clear_multi(&A1, &A2, &B1, &B0, &Q1, &Q0, &R1, &R0, &t, NULL);
return err;
}
mp_err s_mp_div_recursive(const mp_int *a, const mp_int *b, mp_int *q, mp_int *r)
{
int j, m, n, sigma;
mp_err err;
bool neg;
mp_digit msb_b, msb;
mp_int A, B, Q, Q1, R, A_div, A_mod;
if ((err = mp_init_multi(&A, &B, &Q, &Q1, &R, &A_div, &A_mod, NULL)) != MP_OKAY) {
goto LBL_ERR;
}
/* most significant bit of a limb */
/* assumes MP_DIGIT_MAX < (sizeof(mp_digit) * CHAR_BIT) */
msb = (MP_DIGIT_MAX + (mp_digit)(1)) >> 1;
sigma = 0;
msb_b = b->dp[b->used - 1];
while (msb_b < msb) {
sigma++;
msb_b <<= 1;
}
/* Use that sigma to normalize B */
if ((err = mp_mul_2d(b, sigma, &B)) != MP_OKAY) {
goto LBL_ERR;
}
if ((err = mp_mul_2d(a, sigma, &A)) != MP_OKAY) {
goto LBL_ERR;
}
/* fix the sign */
neg = (a->sign != b->sign);
A.sign = B.sign = MP_ZPOS;
/*
If the magnitude of "A" is not more more than twice that of "B" we can work
on them directly, otherwise we need to work at "A" in chunks
*/
n = B.used;
m = A.used - B.used;
/* Q = 0 */
mp_zero(&Q);
while (m > n) {
/* (q, r) = RecursiveDivRem(A / (beta^(m-n)), B) */
j = (m - n) * MP_DIGIT_BIT;
if ((err = mp_div_2d(&A, j, &A_div, &A_mod)) != MP_OKAY) goto LBL_ERR;
if ((err = s_recursion(&A_div, &B, &Q1, &R)) != MP_OKAY) goto LBL_ERR;
/* Q = (Q*beta!(n)) + q */
if ((err = mp_mul_2d(&Q, n * MP_DIGIT_BIT, &Q)) != MP_OKAY) goto LBL_ERR;
if ((err = mp_add(&Q, &Q1, &Q)) != MP_OKAY) goto LBL_ERR;
/* A = (r * beta^(m-n)) + (A % beta^(m-n))*/
if ((err = mp_mul_2d(&R, (m - n) * MP_DIGIT_BIT, &R)) != MP_OKAY) goto LBL_ERR;
if ((err = mp_add(&R, &A_mod, &A)) != MP_OKAY) goto LBL_ERR;
/* m = m - n */
m = m - n;
}
/* (q, r) = RecursiveDivRem(A, B) */
if ((err = s_recursion(&A, &B, &Q1, &R)) != MP_OKAY) goto LBL_ERR;
/* Q = (Q * beta^m) + q, R = r */
if ((err = mp_mul_2d(&Q, m * MP_DIGIT_BIT, &Q)) != MP_OKAY) goto LBL_ERR;
if ((err = mp_add(&Q, &Q1, &Q)) != MP_OKAY) goto LBL_ERR;
/* get sign before writing to c */
R.sign = (mp_iszero(&Q) ? MP_ZPOS : a->sign);
if (q != NULL) {
mp_exch(&Q, q);
q->sign = (neg ? MP_NEG : MP_ZPOS);
}
if (r != NULL) {
/* de-normalize the remainder */
if ((err = mp_div_2d(&R, sigma, &R, NULL)) != MP_OKAY) goto LBL_ERR;
mp_exch(&R, r);
}
LBL_ERR:
mp_clear_multi(&A, &B, &Q, &Q1, &R, &A_div, &A_mod, NULL);
return err;
}
#endif
|