aboutsummaryrefslogtreecommitdiff
path: root/src/libtommath/s_mp_div_school.c
blob: b6a615d1032da55208b7dfaa7340e641721687cc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#include "tommath_private.h"
#ifdef S_MP_DIV_SCHOOL_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

/* integer signed division.
 * c*b + d == a [e.g. a/b, c=quotient, d=remainder]
 * HAC pp.598 Algorithm 14.20
 *
 * Note that the description in HAC is horribly
 * incomplete.  For example, it doesn't consider
 * the case where digits are removed from 'x' in
 * the inner loop.  It also doesn't consider the
 * case that y has fewer than three digits, etc..
 *
 * The overall algorithm is as described as
 * 14.20 from HAC but fixed to treat these cases.
*/
mp_err s_mp_div_school(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d)
{
   mp_int q, x, y, t1, t2;
   int n, t, i, norm;
   bool neg;
   mp_err err;

   if ((err = mp_init_size(&q, a->used + 2)) != MP_OKAY) {
      return err;
   }
   q.used = a->used + 2;

   if ((err = mp_init(&t1)) != MP_OKAY)                           goto LBL_Q;
   if ((err = mp_init(&t2)) != MP_OKAY)                           goto LBL_T1;
   if ((err = mp_init_copy(&x, a)) != MP_OKAY)                    goto LBL_T2;
   if ((err = mp_init_copy(&y, b)) != MP_OKAY)                    goto LBL_X;

   /* fix the sign */
   neg = (a->sign != b->sign);
   x.sign = y.sign = MP_ZPOS;

   /* normalize both x and y, ensure that y >= b/2, [b == 2**MP_DIGIT_BIT] */
   norm = mp_count_bits(&y) % MP_DIGIT_BIT;
   if (norm < (MP_DIGIT_BIT - 1)) {
      norm = (MP_DIGIT_BIT - 1) - norm;
      if ((err = mp_mul_2d(&x, norm, &x)) != MP_OKAY)             goto LBL_Y;
      if ((err = mp_mul_2d(&y, norm, &y)) != MP_OKAY)             goto LBL_Y;
   } else {
      norm = 0;
   }

   /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
   n = x.used - 1;
   t = y.used - 1;

   /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
   /* y = y*b**{n-t} */
   if ((err = mp_lshd(&y, n - t)) != MP_OKAY)                     goto LBL_Y;

   while (mp_cmp(&x, &y) != MP_LT) {
      ++(q.dp[n - t]);
      if ((err = mp_sub(&x, &y, &x)) != MP_OKAY)                  goto LBL_Y;
   }

   /* reset y by shifting it back down */
   mp_rshd(&y, n - t);

   /* step 3. for i from n down to (t + 1) */
   for (i = n; i >= (t + 1); i--) {
      if (i > x.used) {
         continue;
      }

      /* step 3.1 if xi == yt then set q{i-t-1} to b-1,
       * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
      if (x.dp[i] == y.dp[t]) {
         q.dp[(i - t) - 1] = ((mp_digit)1 << (mp_digit)MP_DIGIT_BIT) - (mp_digit)1;
      } else {
         mp_word tmp;
         tmp = (mp_word)x.dp[i] << (mp_word)MP_DIGIT_BIT;
         tmp |= (mp_word)x.dp[i - 1];
         tmp /= (mp_word)y.dp[t];
         if (tmp > (mp_word)MP_MASK) {
            tmp = MP_MASK;
         }
         q.dp[(i - t) - 1] = (mp_digit)(tmp & (mp_word)MP_MASK);
      }

      /* while (q{i-t-1} * (yt * b + y{t-1})) >
               xi * b**2 + xi-1 * b + xi-2

         do q{i-t-1} -= 1;
      */
      q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] + 1uL) & (mp_digit)MP_MASK;
      do {
         q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1uL) & (mp_digit)MP_MASK;

         /* find left hand */
         mp_zero(&t1);
         t1.dp[0] = ((t - 1) < 0) ? 0u : y.dp[t - 1];
         t1.dp[1] = y.dp[t];
         t1.used = 2;
         if ((err = mp_mul_d(&t1, q.dp[(i - t) - 1], &t1)) != MP_OKAY)   goto LBL_Y;

         /* find right hand */
         t2.dp[0] = ((i - 2) < 0) ? 0u : x.dp[i - 2];
         t2.dp[1] = x.dp[i - 1]; /* i >= 1 always holds */
         t2.dp[2] = x.dp[i];
         t2.used = 3;
      } while (mp_cmp_mag(&t1, &t2) == MP_GT);

      /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
      if ((err = mp_mul_d(&y, q.dp[(i - t) - 1], &t1)) != MP_OKAY)       goto LBL_Y;
      if ((err = mp_lshd(&t1, (i - t) - 1)) != MP_OKAY)                  goto LBL_Y;
      if ((err = mp_sub(&x, &t1, &x)) != MP_OKAY)                        goto LBL_Y;

      /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
      if (mp_isneg(&x)) {
         if ((err = mp_copy(&y, &t1)) != MP_OKAY)                        goto LBL_Y;
         if ((err = mp_lshd(&t1, (i - t) - 1)) != MP_OKAY)               goto LBL_Y;
         if ((err = mp_add(&x, &t1, &x)) != MP_OKAY)                     goto LBL_Y;

         q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1uL) & MP_MASK;
      }
   }

   /* now q is the quotient and x is the remainder
    * [which we have to normalize]
    */

   /* get sign before writing to c */
   x.sign = mp_iszero(&x) ? MP_ZPOS : a->sign;

   if (c != NULL) {
      mp_clamp(&q);
      mp_exch(&q, c);
      c->sign = (neg ? MP_NEG : MP_ZPOS);
   }

   if (d != NULL) {
      if ((err = mp_div_2d(&x, norm, &x, NULL)) != MP_OKAY)       goto LBL_Y;
      mp_exch(&x, d);
   }

LBL_Y:
   mp_clear(&y);
LBL_X:
   mp_clear(&x);
LBL_T2:
   mp_clear(&t2);
LBL_T1:
   mp_clear(&t1);
LBL_Q:
   mp_clear(&q);
   return err;
}

#endif