aboutsummaryrefslogtreecommitdiff
path: root/src/llvm_abi.cpp
blob: 298041aa62b83e4e8cbac565efa2c1d5daeac010 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
enum lbArgKind {
	lbArg_Direct,
	lbArg_Indirect,
	lbArg_Ignore,
};

struct lbArgType {
	lbArgKind kind;
	LLVMTypeRef type;
	LLVMTypeRef cast_type;      // Optional
	LLVMTypeRef pad_type;       // Optional
	LLVMAttributeRef attribute; // Optional
	LLVMAttributeRef align_attribute; // Optional
	i64 byval_alignment;
	bool is_byval;
};


i64 lb_sizeof(LLVMTypeRef type);
i64 lb_alignof(LLVMTypeRef type);

lbArgType lb_arg_type_direct(LLVMTypeRef type, LLVMTypeRef cast_type, LLVMTypeRef pad_type, LLVMAttributeRef attr) {
	return lbArgType{lbArg_Direct, type, cast_type, pad_type, attr, nullptr, 0, false};
}
lbArgType lb_arg_type_direct(LLVMTypeRef type) {
	return lb_arg_type_direct(type, nullptr, nullptr, nullptr);
}

lbArgType lb_arg_type_indirect(LLVMTypeRef type, LLVMAttributeRef attr) {
	return lbArgType{lbArg_Indirect, type, nullptr, nullptr, attr, nullptr, 0, false};
}

lbArgType lb_arg_type_indirect_byval(LLVMContextRef c, LLVMTypeRef type) {
	i64 alignment = lb_alignof(type);
	alignment = gb_max(alignment, 8);

	LLVMAttributeRef byval_attr = lb_create_enum_attribute_with_type(c, "byval", type);
	LLVMAttributeRef align_attr = lb_create_enum_attribute(c, "align", alignment);
	return lbArgType{lbArg_Indirect, type, nullptr, nullptr, byval_attr, align_attr, alignment, true};
}

lbArgType lb_arg_type_ignore(LLVMTypeRef type) {
	return lbArgType{lbArg_Ignore, type, nullptr, nullptr, nullptr, nullptr, 0, false};
}

struct lbFunctionType {
	LLVMContextRef   ctx;
	ProcCallingConvention calling_convention;
	Array<lbArgType> args;
	lbArgType        ret;
};

i64 llvm_align_formula(i64 off, i64 a) {
	return (off + a - 1) / a * a;
}


bool lb_is_type_kind(LLVMTypeRef type, LLVMTypeKind kind) {
	if (type == nullptr) {
		return false;
	}
	return LLVMGetTypeKind(type) == kind;
}

LLVMTypeRef lb_function_type_to_llvm_raw(lbFunctionType *ft, bool is_var_arg) {
	unsigned arg_count = cast(unsigned)ft->args.count;
	unsigned offset = 0;

	LLVMTypeRef ret = nullptr;
	if (ft->ret.kind == lbArg_Direct) {
		if (ft->ret.cast_type != nullptr) {
			ret = ft->ret.cast_type;
		} else {
			ret = ft->ret.type;
		}
	} else if (ft->ret.kind == lbArg_Indirect) {
		offset += 1;
		ret = LLVMVoidTypeInContext(ft->ctx);
	} else if (ft->ret.kind == lbArg_Ignore) {
		ret = LLVMVoidTypeInContext(ft->ctx);
	}
	GB_ASSERT_MSG(ret != nullptr, "%d", ft->ret.kind);

	unsigned maximum_arg_count = offset+arg_count;
	LLVMTypeRef *args = gb_alloc_array(permanent_allocator(), LLVMTypeRef, maximum_arg_count);
	if (offset == 1) {
		GB_ASSERT(ft->ret.kind == lbArg_Indirect);
		args[0] = LLVMPointerType(ft->ret.type, 0);
	}

	unsigned arg_index = offset;
	for (unsigned i = 0; i < arg_count; i++) {
		lbArgType *arg = &ft->args[i];
		if (arg->kind == lbArg_Direct) {
			LLVMTypeRef arg_type = nullptr;
			if (ft->args[i].cast_type != nullptr) {
				arg_type = arg->cast_type;
			} else {
				arg_type = arg->type;
			}
			args[arg_index++] = arg_type;
		} else if (arg->kind == lbArg_Indirect) {
			GB_ASSERT(!lb_is_type_kind(arg->type, LLVMPointerTypeKind));
			args[arg_index++] = LLVMPointerType(arg->type, 0);
		} else if (arg->kind == lbArg_Ignore) {
			// ignore
		}
	}
	unsigned total_arg_count = arg_index;
	LLVMTypeRef func_type = LLVMFunctionType(ret, args, total_arg_count, is_var_arg);
	return func_type;
}


// LLVMTypeRef lb_function_type_to_llvm_ptr(lbFunctionType *ft, bool is_var_arg) {
// 	LLVMTypeRef func_type = lb_function_type_to_llvm_raw(ft, is_var_arg);
// 	return LLVMPointerType(func_type, 0);
// }


void lb_add_function_type_attributes(LLVMValueRef fn, lbFunctionType *ft, ProcCallingConvention calling_convention) {
	if (ft == nullptr) {
		return;
	}
	unsigned arg_count = cast(unsigned)ft->args.count;
	unsigned offset = 0;
	if (ft->ret.kind == lbArg_Indirect) {
		offset += 1;
	}

	LLVMContextRef c = ft->ctx;
	LLVMAttributeRef noalias_attr   = lb_create_enum_attribute(c, "noalias");
	LLVMAttributeRef nonnull_attr   = lb_create_enum_attribute(c, "nonnull");
	LLVMAttributeRef nocapture_attr = lb_create_enum_attribute(c, "nocapture");

	unsigned arg_index = offset;
	for (unsigned i = 0; i < arg_count; i++) {
		lbArgType *arg = &ft->args[i];
		if (arg->kind == lbArg_Ignore) {
			continue;
		}

		if (arg->attribute) {
			LLVMAddAttributeAtIndex(fn, arg_index+1, arg->attribute);
		}
		if (arg->align_attribute) {
			LLVMAddAttributeAtIndex(fn, arg_index+1, arg->align_attribute);
		}

		arg_index++;
	}

	if (offset != 0 && ft->ret.kind == lbArg_Indirect && ft->ret.attribute != nullptr) {
		LLVMAddAttributeAtIndex(fn, offset, ft->ret.attribute);
		LLVMAddAttributeAtIndex(fn, offset, noalias_attr);
	}

	lbCallingConventionKind cc_kind = lbCallingConvention_C;
	// TODO(bill): Clean up this logic
	if (!is_arch_wasm()) {
		cc_kind = lb_calling_convention_map[calling_convention];
	} 
	// if (build_context.metrics.arch == TargetArch_amd64) {
	// 	if (build_context.metrics.os == TargetOs_windows) {
	// 		if (cc_kind == lbCallingConvention_C) {
	// 			cc_kind = lbCallingConvention_Win64;
	// 		}
	// 	} else {
	// 		if (cc_kind == lbCallingConvention_C) {
	// 			cc_kind = lbCallingConvention_X86_64_SysV;
	// 		}
	// 	}
	// } 
	LLVMSetFunctionCallConv(fn, cc_kind);
	if (calling_convention == ProcCC_Odin) {
		unsigned context_index = offset+arg_count;
		LLVMAddAttributeAtIndex(fn, context_index, noalias_attr);
		LLVMAddAttributeAtIndex(fn, context_index, nonnull_attr);
		LLVMAddAttributeAtIndex(fn, context_index, nocapture_attr);
	}

}


i64 lb_sizeof(LLVMTypeRef type) {
	LLVMTypeKind kind = LLVMGetTypeKind(type);
	switch (kind) {
	case LLVMVoidTypeKind:
		return 0;
	case LLVMIntegerTypeKind:
		{
			unsigned w = LLVMGetIntTypeWidth(type);
			return (w + 7)/8;
		}
	case LLVMHalfTypeKind:
		return 2;
	case LLVMFloatTypeKind:
		return 4;
	case LLVMDoubleTypeKind:
		return 8;
	case LLVMPointerTypeKind:
		return build_context.word_size;
	case LLVMStructTypeKind:
		{
			unsigned field_count = LLVMCountStructElementTypes(type);
			i64 offset = 0;
			if (LLVMIsPackedStruct(type)) {
				for (unsigned i = 0; i < field_count; i++) {
					LLVMTypeRef field = LLVMStructGetTypeAtIndex(type, i);
					offset += lb_sizeof(field);
				}
			} else {
				for (unsigned i = 0; i < field_count; i++) {
					LLVMTypeRef field = LLVMStructGetTypeAtIndex(type, i);
					i64 align = lb_alignof(field);
					offset = llvm_align_formula(offset, align);
					offset += lb_sizeof(field);
				}
				offset = llvm_align_formula(offset, lb_alignof(type));
			}
			return offset;
		}
		break;
	case LLVMArrayTypeKind:
		{
			LLVMTypeRef elem = OdinLLVMGetArrayElementType(type);
			i64 elem_size = lb_sizeof(elem);
			i64 count = LLVMGetArrayLength(type);
			i64 size = count * elem_size;
			return size;
		}
		break;

	case LLVMX86_MMXTypeKind:
		return 8;
	case LLVMVectorTypeKind:
		{
			LLVMTypeRef elem = OdinLLVMGetVectorElementType(type);
			i64 elem_size = lb_sizeof(elem);
			i64 count = LLVMGetVectorSize(type);
			i64 size = count * elem_size;
			return next_pow2(size);
		}

	}
	GB_PANIC("Unhandled type for lb_sizeof -> %s", LLVMPrintTypeToString(type));

	return 0;
}

i64 lb_alignof(LLVMTypeRef type) {
	LLVMTypeKind kind = LLVMGetTypeKind(type);
	switch (kind) {
	case LLVMVoidTypeKind:
		return 1;
	case LLVMIntegerTypeKind:
		{
			unsigned w = LLVMGetIntTypeWidth(type);
			return gb_clamp((w + 7)/8, 1, build_context.word_size);
		}
	case LLVMHalfTypeKind:
		return 2;
	case LLVMFloatTypeKind:
		return 4;
	case LLVMDoubleTypeKind:
		return 8;
	case LLVMPointerTypeKind:
		return build_context.word_size;
	case LLVMStructTypeKind:
		{
			if (LLVMIsPackedStruct(type)) {
				return 1;
			} else {
				unsigned field_count = LLVMCountStructElementTypes(type);
				i64 max_align = 1;
				for (unsigned i = 0; i < field_count; i++) {
					LLVMTypeRef field = LLVMStructGetTypeAtIndex(type, i);
					i64 field_align = lb_alignof(field);
					max_align = gb_max(max_align, field_align);
				}
				return max_align;
			}
		}
		break;
	case LLVMArrayTypeKind:
		return lb_alignof(OdinLLVMGetArrayElementType(type));

	case LLVMX86_MMXTypeKind:
		return 8;
	case LLVMVectorTypeKind:
		{
			// TODO(bill): This appears to be correct but LLVM isn't necessarily "great" with regards to documentation
			LLVMTypeRef elem = OdinLLVMGetVectorElementType(type);
			i64 elem_size = lb_sizeof(elem);
			i64 count = LLVMGetVectorSize(type);
			i64 size = count * elem_size;
			return gb_clamp(next_pow2(size), 1, build_context.max_simd_align);
		}

	}
	GB_PANIC("Unhandled type for lb_sizeof -> %s", LLVMPrintTypeToString(type));

	// LLVMValueRef v = LLVMAlignOf(type);
	// GB_ASSERT(LLVMIsConstant(v));
	// return LLVMConstIntGetSExtValue(v);
	return 1;
}


#define LB_ABI_INFO(name) lbFunctionType *name(LLVMContextRef c, LLVMTypeRef *arg_types, unsigned arg_count, LLVMTypeRef return_type, bool return_is_defined, ProcCallingConvention calling_convention)
typedef LB_ABI_INFO(lbAbiInfoType);


// NOTE(bill): I hate `namespace` in C++ but this is just because I don't want to prefix everything
namespace lbAbi386 {
	Array<lbArgType> compute_arg_types(LLVMContextRef c, LLVMTypeRef *arg_types, unsigned arg_count);
	lbArgType compute_return_type(LLVMContextRef c, LLVMTypeRef return_type, bool return_is_defined);

	LB_ABI_INFO(abi_info) {
		lbFunctionType *ft = gb_alloc_item(permanent_allocator(), lbFunctionType);
		ft->ctx = c;
		ft->args = compute_arg_types(c, arg_types, arg_count);
		ft->ret = compute_return_type(c, return_type, return_is_defined);
		ft->calling_convention = calling_convention;
		return ft;
	}

	lbArgType non_struct(LLVMContextRef c, LLVMTypeRef type, bool is_return) {
		if (!is_return && lb_sizeof(type) > 8) {
			return lb_arg_type_indirect(type, nullptr);
		}

		if (build_context.metrics.os == TargetOs_windows &&
		    build_context.word_size == 8 &&
		    lb_is_type_kind(type, LLVMIntegerTypeKind) &&
		    type == LLVMIntTypeInContext(c, 128)) {
		    	// NOTE(bill): Because Windows AMD64 is weird
		    	// TODO(bill): LLVM is probably bugged here and doesn't correctly generate the right code
		    	// So even though it is "technically" wrong, no cast might be the best option
		    	LLVMTypeRef cast_type = nullptr;
		    	if (true || !is_return) {
				cast_type = LLVMVectorType(LLVMInt64TypeInContext(c), 2);
			}
			return lb_arg_type_direct(type, cast_type, nullptr, nullptr);
		}

		LLVMAttributeRef attr = nullptr;
		LLVMTypeRef i1 = LLVMInt1TypeInContext(c);
		if (type == i1) {
			attr = lb_create_enum_attribute(c, "zeroext");
		}
		return lb_arg_type_direct(type, nullptr, nullptr, attr);
	}

	Array<lbArgType> compute_arg_types(LLVMContextRef c, LLVMTypeRef *arg_types, unsigned arg_count) {
		auto args = array_make<lbArgType>(heap_allocator(), arg_count);

		for (unsigned i = 0; i < arg_count; i++) {
			LLVMTypeRef t = arg_types[i];
			LLVMTypeKind kind = LLVMGetTypeKind(t);
			i64 sz = lb_sizeof(t);
			if (kind == LLVMStructTypeKind || kind == LLVMArrayTypeKind) {
				if (sz == 0) {
					args[i] = lb_arg_type_ignore(t);
				} else {
					args[i] = lb_arg_type_indirect(t, nullptr);
				}
			} else {
				args[i] = non_struct(c, t, false);
			}
		}
		return args;
	}

	lbArgType compute_return_type(LLVMContextRef c, LLVMTypeRef return_type, bool return_is_defined) {
		if (!return_is_defined) {
			return lb_arg_type_direct(LLVMVoidTypeInContext(c));
		} else if (lb_is_type_kind(return_type, LLVMStructTypeKind) || lb_is_type_kind(return_type, LLVMArrayTypeKind)) {
			i64 sz = lb_sizeof(return_type);
			switch (sz) {
			case 1: return lb_arg_type_direct(return_type, LLVMIntTypeInContext(c,  8), nullptr, nullptr);
			case 2: return lb_arg_type_direct(return_type, LLVMIntTypeInContext(c, 16), nullptr, nullptr);
			case 4: return lb_arg_type_direct(return_type, LLVMIntTypeInContext(c, 32), nullptr, nullptr);
			case 8: return lb_arg_type_direct(return_type, LLVMIntTypeInContext(c, 64), nullptr, nullptr);
			}
			LLVMAttributeRef attr = lb_create_enum_attribute_with_type(c, "sret", return_type);
			return lb_arg_type_indirect(return_type, attr);
		}
		return non_struct(c, return_type, true);
	}
};

namespace lbAbiAmd64Win64 {
	Array<lbArgType> compute_arg_types(LLVMContextRef c, LLVMTypeRef *arg_types, unsigned arg_count);


	LB_ABI_INFO(abi_info) {
		lbFunctionType *ft = gb_alloc_item(permanent_allocator(), lbFunctionType);
		ft->ctx = c;
		ft->args = compute_arg_types(c, arg_types, arg_count);
		ft->ret = lbAbi386::compute_return_type(c, return_type, return_is_defined);
		ft->calling_convention = calling_convention;
		return ft;
	}

	Array<lbArgType> compute_arg_types(LLVMContextRef c, LLVMTypeRef *arg_types, unsigned arg_count) {
		auto args = array_make<lbArgType>(heap_allocator(), arg_count);

		for (unsigned i = 0; i < arg_count; i++) {
			LLVMTypeRef t = arg_types[i];
			LLVMTypeKind kind = LLVMGetTypeKind(t);
			if (kind == LLVMStructTypeKind || kind == LLVMArrayTypeKind) {
				i64 sz = lb_sizeof(t);
				switch (sz) {
				case 1:
				case 2:
				case 4:
				case 8:
					args[i] = lb_arg_type_direct(t, LLVMIntTypeInContext(c, 8*cast(unsigned)sz), nullptr, nullptr);
					break;
				default:
					args[i] = lb_arg_type_indirect(t, nullptr);
					break;
				}
			} else {
				args[i] = lbAbi386::non_struct(c, t, false);
			}
		}
		return args;
	}
};

// NOTE(bill): I hate `namespace` in C++ but this is just because I don't want to prefix everything
namespace lbAbiAmd64SysV {
	enum RegClass {
		RegClass_NoClass,
		RegClass_Int,
		RegClass_SSEFs,
		RegClass_SSEFv,
		RegClass_SSEDs,
		RegClass_SSEDv,
		RegClass_SSEInt8,
		RegClass_SSEInt16,
		RegClass_SSEInt32,
		RegClass_SSEInt64,
		RegClass_SSEUp,
		RegClass_X87,
		RegClass_X87Up,
		RegClass_ComplexX87,
		RegClass_Memory,
	};

	bool is_sse(RegClass reg_class) {
		switch (reg_class) {
		case RegClass_SSEFs:
		case RegClass_SSEFv:
		case RegClass_SSEDs:
		case RegClass_SSEDv:
			return true;
		case RegClass_SSEInt8:
		case RegClass_SSEInt16:
		case RegClass_SSEInt32:
		case RegClass_SSEInt64:
			return true;
		}
		return false;
	}

	void all_mem(Array<RegClass> *cs) {
		for_array(i, *cs) {
			(*cs)[i] = RegClass_Memory;
		}
	}

	enum Amd64TypeAttributeKind {
		Amd64TypeAttribute_None,
		Amd64TypeAttribute_ByVal,
		Amd64TypeAttribute_StructRect,
	};

	lbArgType compute_return_type(LLVMContextRef c, LLVMTypeRef return_type, bool return_is_defined);
	void classify_with(LLVMTypeRef t, Array<RegClass> *cls, i64 ix, i64 off);
	void fixup(LLVMTypeRef t, Array<RegClass> *cls);
	lbArgType amd64_type(LLVMContextRef c, LLVMTypeRef type, Amd64TypeAttributeKind attribute_kind, ProcCallingConvention calling_convention);
	Array<RegClass> classify(LLVMTypeRef t);
	LLVMTypeRef llreg(LLVMContextRef c, Array<RegClass> const &reg_classes);

	LB_ABI_INFO(abi_info) {
		lbFunctionType *ft = gb_alloc_item(permanent_allocator(), lbFunctionType);
		ft->ctx = c;
		ft->calling_convention = calling_convention;

		ft->args = array_make<lbArgType>(heap_allocator(), arg_count);
		for (unsigned i = 0; i < arg_count; i++) {
			ft->args[i] = amd64_type(c, arg_types[i], Amd64TypeAttribute_ByVal, calling_convention);
		}

		if (return_is_defined) {
			ft->ret = amd64_type(c, return_type, Amd64TypeAttribute_StructRect, calling_convention);
		} else {
			ft->ret = lb_arg_type_direct(LLVMVoidTypeInContext(c));
		}

		return ft;
	}

	bool is_mem_cls(Array<RegClass> const &cls, Amd64TypeAttributeKind attribute_kind) {
		if (attribute_kind == Amd64TypeAttribute_ByVal) {
			if (cls.count == 0) {
				return false;
			}
			auto first = cls[0];
			return first == RegClass_Memory || first == RegClass_X87 || first == RegClass_ComplexX87;
		} else if (attribute_kind == Amd64TypeAttribute_StructRect) {
			if (cls.count == 0) {
				return false;
			}
			return cls[0] == RegClass_Memory;
		}
		return false;
	}

	bool is_register(LLVMTypeRef type) {
		LLVMTypeKind kind = LLVMGetTypeKind(type);
		i64 sz = lb_sizeof(type);
		if (sz == 0) {
			return false;
		}
		switch (kind) {
		case LLVMIntegerTypeKind:
		case LLVMHalfTypeKind:
		case LLVMFloatTypeKind:
		case LLVMDoubleTypeKind:
		case LLVMPointerTypeKind:
			return true;
		}
		return false;
	}

	bool is_llvm_type_slice_like(LLVMTypeRef type) {
		if (!lb_is_type_kind(type, LLVMStructTypeKind)) {
			return false;
		}
		if (LLVMCountStructElementTypes(type) != 2) {
			return false;
		}
		LLVMTypeRef fields[2] = {};
		LLVMGetStructElementTypes(type, fields);
		if (!lb_is_type_kind(fields[0], LLVMPointerTypeKind)) {
			return false;
		}
		return lb_is_type_kind(fields[1], LLVMIntegerTypeKind) && lb_sizeof(fields[1]) == 8;

	}

	lbArgType amd64_type(LLVMContextRef c, LLVMTypeRef type, Amd64TypeAttributeKind attribute_kind, ProcCallingConvention calling_convention) {
		if (is_register(type)) {
			LLVMAttributeRef attribute = nullptr;
			if (type == LLVMInt1TypeInContext(c)) {
				attribute = lb_create_enum_attribute(c, "zeroext");
			}
			return lb_arg_type_direct(type, nullptr, nullptr, attribute);
		}

		auto cls = classify(type);
		if (is_mem_cls(cls, attribute_kind)) {
			LLVMAttributeRef attribute = nullptr;
			if (attribute_kind == Amd64TypeAttribute_ByVal) {
				// if (!is_calling_convention_odin(calling_convention)) {
					return lb_arg_type_indirect_byval(c, type);
				// }
				// attribute = nullptr;
			} else if (attribute_kind == Amd64TypeAttribute_StructRect) {
				attribute = lb_create_enum_attribute_with_type(c, "sret", type);
			}
			return lb_arg_type_indirect(type, attribute);
		} else {
			LLVMTypeRef reg_type = nullptr;
			if (is_llvm_type_slice_like(type)) {
				// NOTE(bill): This is to make the ABI look closer to what the
				// original code is just for slices/strings whilst still adhering
				// the ABI rules for SysV
				reg_type = type;
			} else {
				reg_type = llreg(c, cls);
			}
			return lb_arg_type_direct(type, reg_type, nullptr, nullptr);
		}
	}

	lbArgType non_struct(LLVMContextRef c, LLVMTypeRef type) {
		LLVMAttributeRef attr = nullptr;
		LLVMTypeRef i1 = LLVMInt1TypeInContext(c);
		if (type == i1) {
			attr = lb_create_enum_attribute(c, "zeroext");
		}
		return lb_arg_type_direct(type, nullptr, nullptr, attr);
	}

	Array<RegClass> classify(LLVMTypeRef t) {
		i64 sz = lb_sizeof(t);
		i64 words = (sz + 7)/8;
		auto reg_classes = array_make<RegClass>(heap_allocator(), cast(isize)words);
		if (words > 4) {
			all_mem(&reg_classes);
		} else {
			classify_with(t, &reg_classes, 0, 0);
			fixup(t, &reg_classes);
		}
		return reg_classes;
	}

	void unify(Array<RegClass> *cls, i64 i, RegClass const newv) {
		RegClass const oldv = (*cls)[cast(isize)i];
		if (oldv == newv) {
			return;
		}

		RegClass to_write = newv;
		if (oldv == RegClass_NoClass) {
			to_write = newv;
		} else if (newv == RegClass_NoClass) {
			return;
		} else if (oldv == RegClass_Memory || newv == RegClass_Memory) {
			to_write = RegClass_Memory;
		} else if (oldv == RegClass_Int || newv == RegClass_Int) {
			to_write = RegClass_Int;
		} else if (oldv == RegClass_X87 || oldv == RegClass_X87Up || oldv == RegClass_ComplexX87) {
			to_write = RegClass_Memory;
		} else if (newv == RegClass_X87 || newv == RegClass_X87Up || newv == RegClass_ComplexX87) {
			to_write = RegClass_Memory;
		} else if (newv == RegClass_SSEUp) {
			switch (oldv) {
			case RegClass_SSEFv:
			case RegClass_SSEFs:
			case RegClass_SSEDv:
			case RegClass_SSEDs:
			case RegClass_SSEInt8:
			case RegClass_SSEInt16:
			case RegClass_SSEInt32:
			case RegClass_SSEInt64:
				return;
			}
		}

		(*cls)[cast(isize)i] = to_write;
	}

	void fixup(LLVMTypeRef t, Array<RegClass> *cls) {
		i64 i = 0;
		i64 e = cls->count;
		if (e > 2 && (lb_is_type_kind(t, LLVMStructTypeKind) ||
		              lb_is_type_kind(t, LLVMArrayTypeKind) ||
		              lb_is_type_kind(t, LLVMVectorTypeKind))) {
			RegClass &oldv = (*cls)[cast(isize)i];
			if (is_sse(oldv)) {
				for (i++; i < e; i++) {
					if (oldv != RegClass_SSEUp) {
						all_mem(cls);
						return;
					}
				}
			} else {
				all_mem(cls);
				return;
			}
		} else {
			while (i < e) {
				RegClass &oldv = (*cls)[cast(isize)i];
				if (oldv == RegClass_Memory) {
					all_mem(cls);
					return;
				} else if (oldv == RegClass_X87Up) {
					// NOTE(bill): Darwin
					all_mem(cls);
					return;
				} else if (oldv == RegClass_SSEUp) {
					oldv = RegClass_SSEDv;
				} else if (is_sse(oldv)) {
					i++;
					while (i != e && oldv == RegClass_SSEUp) {
						i++;
					}
				} else if (oldv == RegClass_X87) {
					i++;
					while (i != e && oldv == RegClass_X87Up) {
						i++;
					}
				} else {
					i++;
				}
			}
		}
	}

	unsigned llvec_len(Array<RegClass> const &reg_classes, isize offset) {
		unsigned len = 1;
		for (isize i = offset; i < reg_classes.count; i++) {
			if (reg_classes[i] != RegClass_SSEUp) {
				break;
			}
			len++;
		}
		return len;
	}


	LLVMTypeRef llreg(LLVMContextRef c, Array<RegClass> const &reg_classes) {
		auto types = array_make<LLVMTypeRef>(heap_allocator(), 0, reg_classes.count);
		for (isize i = 0; i < reg_classes.count; /**/) {
			RegClass reg_class = reg_classes[i];
			switch (reg_class) {
			case RegClass_Int:
				array_add(&types, LLVMIntTypeInContext(c, 64));
				break;
			case RegClass_SSEFv:
			case RegClass_SSEDv:
			case RegClass_SSEInt8:
			case RegClass_SSEInt16:
			case RegClass_SSEInt32:
			case RegClass_SSEInt64:
				{
					unsigned elems_per_word = 0;
					LLVMTypeRef elem_type = nullptr;
					switch (reg_class) {
					case RegClass_SSEFv:
						elems_per_word = 2;
						elem_type = LLVMFloatTypeInContext(c);
						break;
					case RegClass_SSEDv:
						elems_per_word = 1;
						elem_type = LLVMDoubleTypeInContext(c);
						break;
					case RegClass_SSEInt8:
						elems_per_word = 64/8;
						elem_type = LLVMIntTypeInContext(c, 8);
						break;
					case RegClass_SSEInt16:
						elems_per_word = 64/16;
						elem_type = LLVMIntTypeInContext(c, 16);
						break;
					case RegClass_SSEInt32:
						elems_per_word = 64/32;
						elem_type = LLVMIntTypeInContext(c, 32);
						break;
					case RegClass_SSEInt64:
						elems_per_word = 64/64;
						elem_type = LLVMIntTypeInContext(c, 64);
						break;
					}

					unsigned vec_len = llvec_len(reg_classes, i+1);
					LLVMTypeRef vec_type = LLVMVectorType(elem_type, vec_len * elems_per_word);
					array_add(&types, vec_type);
					i += vec_len;
					continue;
				}
				break;
			case RegClass_SSEFs:
				array_add(&types, LLVMFloatTypeInContext(c));
				break;
			case RegClass_SSEDs:
				array_add(&types, LLVMDoubleTypeInContext(c));
				break;
			default:
				GB_PANIC("Unhandled RegClass");
			}
			i += 1;
		}

		if (types.count == 1) {
			return types[0];
		}
		return LLVMStructTypeInContext(c, types.data, cast(unsigned)types.count, false);
	}

	void classify_with(LLVMTypeRef t, Array<RegClass> *cls, i64 ix, i64 off) {
		i64 t_align = lb_alignof(t);
		i64 t_size  = lb_sizeof(t);

		i64 misalign = off % t_align;
		if (misalign != 0) {
			i64 e = (off + t_size + 7) / 8;
			for (i64 i = off / 8; i < e; i++) {
				unify(cls, ix+i, RegClass_Memory);
			}
			return;
		}

		switch (LLVMGetTypeKind(t)) {
		case LLVMIntegerTypeKind:
		case LLVMPointerTypeKind:
		case LLVMHalfTypeKind:
			unify(cls, ix + off/8, RegClass_Int);
			break;
		case LLVMFloatTypeKind:
			unify(cls, ix + off/8, (off%8 == 4) ? RegClass_SSEFv : RegClass_SSEFs);
			break;
		case LLVMDoubleTypeKind:
			unify(cls, ix + off/8,  RegClass_SSEDs);
			break;
		case LLVMStructTypeKind:
			{
				LLVMBool packed = LLVMIsPackedStruct(t);
				unsigned field_count = LLVMCountStructElementTypes(t);

				i64 field_off = off;
				for (unsigned field_index = 0; field_index < field_count; field_index++) {
					LLVMTypeRef field_type = LLVMStructGetTypeAtIndex(t, field_index);
					if (!packed) {
						field_off = llvm_align_formula(field_off, lb_alignof(field_type));
					}
					classify_with(field_type, cls, ix, field_off);
					field_off += lb_sizeof(field_type);
				}
			}
			break;
		case LLVMArrayTypeKind:
			{
				i64 len = LLVMGetArrayLength(t);
				LLVMTypeRef elem = OdinLLVMGetArrayElementType(t);
				i64 elem_sz = lb_sizeof(elem);
				for (i64 i = 0; i < len; i++) {
					classify_with(elem, cls, ix, off + i*elem_sz);
				}
			}
			break;
		case LLVMVectorTypeKind:
			{
				i64 len = LLVMGetVectorSize(t);
				LLVMTypeRef elem = OdinLLVMGetVectorElementType(t);
				i64 elem_sz = lb_sizeof(elem);
				LLVMTypeKind elem_kind = LLVMGetTypeKind(elem);
				RegClass reg = RegClass_NoClass;
				unsigned elem_width = LLVMGetIntTypeWidth(elem);
				switch (elem_kind) {
				case LLVMIntegerTypeKind:
				case LLVMHalfTypeKind:
					switch (elem_width) {
					case 8:  reg = RegClass_SSEInt8;  break;
					case 16: reg = RegClass_SSEInt16; break;
					case 32: reg = RegClass_SSEInt32; break;
					case 64: reg = RegClass_SSEInt64; break;
					default:
						if (elem_width > 64) {
							for (i64 i = 0; i < len; i++) {
								classify_with(elem, cls, ix, off + i*elem_sz);
							}
							break;
						}
						GB_PANIC("Unhandled integer width for vector type %u", elem_width);
					}
					break;
				case LLVMFloatTypeKind:
					reg = RegClass_SSEFv;
					break;
				case LLVMDoubleTypeKind:
					reg = RegClass_SSEDv;
					break;
				default:
					GB_PANIC("Unhandled vector element type");
				}

				for (i64 i = 0; i < len; i++) {
					unify(cls, ix + (off + i*elem_sz)/8, reg);
					// NOTE(bill): Everything after the first one is the upper
					// half of a register
					reg = RegClass_SSEUp;
				}
			}
			break;
		default:
			GB_PANIC("Unhandled type");
			break;
		}
	}

	lbArgType compute_return_type(LLVMContextRef c, LLVMTypeRef return_type, bool return_is_defined) {
		if (!return_is_defined) {
			return lb_arg_type_direct(LLVMVoidTypeInContext(c));
		} else if (lb_is_type_kind(return_type, LLVMStructTypeKind)) {
			i64 sz = lb_sizeof(return_type);
			switch (sz) {
			case 1: return lb_arg_type_direct(return_type, LLVMIntTypeInContext(c,  8), nullptr, nullptr);
			case 2: return lb_arg_type_direct(return_type, LLVMIntTypeInContext(c, 16), nullptr, nullptr);
			case 4: return lb_arg_type_direct(return_type, LLVMIntTypeInContext(c, 32), nullptr, nullptr);
			case 8: return lb_arg_type_direct(return_type, LLVMIntTypeInContext(c, 64), nullptr, nullptr);
			}
			LLVMAttributeRef attr = lb_create_enum_attribute_with_type(c, "sret", return_type);
			return lb_arg_type_indirect(return_type, attr);
		} else if (build_context.metrics.os == TargetOs_windows && lb_is_type_kind(return_type, LLVMIntegerTypeKind) && lb_sizeof(return_type) == 16) {
			return lb_arg_type_direct(return_type, LLVMIntTypeInContext(c, 128), nullptr, nullptr);
		}
		return non_struct(c, return_type);
	}
};


namespace lbAbiArm64 {
	Array<lbArgType> compute_arg_types(LLVMContextRef c, LLVMTypeRef *arg_types, unsigned arg_count);
	lbArgType compute_return_type(LLVMContextRef c, LLVMTypeRef return_type, bool return_is_defined);
	bool is_homogenous_aggregate(LLVMContextRef c, LLVMTypeRef type, LLVMTypeRef *base_type_, unsigned *member_count_);

	LB_ABI_INFO(abi_info) {
		lbFunctionType *ft = gb_alloc_item(permanent_allocator(), lbFunctionType);
		ft->ctx = c;
		ft->ret = compute_return_type(c, return_type, return_is_defined);
		ft -> args = compute_arg_types(c, arg_types, arg_count);
		ft->calling_convention = calling_convention;
		return ft;
	}

	bool is_register(LLVMTypeRef type) {
		LLVMTypeKind kind = LLVMGetTypeKind(type);
		switch (kind) {
		case LLVMIntegerTypeKind:
		case LLVMHalfTypeKind:
		case LLVMFloatTypeKind:
		case LLVMDoubleTypeKind:
		case LLVMPointerTypeKind:
			return true;
		}
		return false;
	}

	lbArgType non_struct(LLVMContextRef c, LLVMTypeRef type) {
		LLVMAttributeRef attr = nullptr;
		LLVMTypeRef i1 = LLVMInt1TypeInContext(c);
		if (type == i1) {
			attr = lb_create_enum_attribute(c, "zeroext");
		}
		return lb_arg_type_direct(type, nullptr, nullptr, attr);
	}

	bool is_homogenous_array(LLVMContextRef c, LLVMTypeRef type, LLVMTypeRef *base_type_, unsigned *member_count_) {
		GB_ASSERT(lb_is_type_kind(type, LLVMArrayTypeKind));
		unsigned len = LLVMGetArrayLength(type);
		if (len == 0) {
			return false;
		}
		LLVMTypeRef elem = OdinLLVMGetArrayElementType(type);
		LLVMTypeRef base_type = nullptr;
		unsigned member_count = 0;
		if (is_homogenous_aggregate(c, elem, &base_type, &member_count)) {
			if (base_type_) *base_type_ = base_type;
			if (member_count_) *member_count_ = member_count * len;
			return true;

		}
		return false;
	}
	bool is_homogenous_struct(LLVMContextRef c, LLVMTypeRef type, LLVMTypeRef *base_type_, unsigned *member_count_) {
		GB_ASSERT(lb_is_type_kind(type, LLVMStructTypeKind));
		unsigned elem_count = LLVMCountStructElementTypes(type);
		if (elem_count == 0) {
			return false;
		}
		LLVMTypeRef base_type = nullptr;
		unsigned member_count = 0;

		for (unsigned i = 0; i < elem_count; i++) {
			LLVMTypeRef field_type = nullptr;
			unsigned field_member_count = 0;

			LLVMTypeRef elem = LLVMStructGetTypeAtIndex(type, i);
			if (!is_homogenous_aggregate(c, elem, &field_type, &field_member_count)) {
				return false;
			}

			if (base_type == nullptr) {
				base_type = field_type;
				member_count = field_member_count;
			} else {
				if (base_type != field_type) {
					return false;
				}
				member_count += field_member_count;
			}
		}

		if (base_type == nullptr) {
			return false;
		}

		if (lb_sizeof(type) == lb_sizeof(base_type) * member_count) {
			if (base_type_) *base_type_ = base_type;
			if (member_count_) *member_count_ = member_count;
			return true;
		}

		return false;
	}


	bool is_homogenous_aggregate(LLVMContextRef c, LLVMTypeRef type, LLVMTypeRef *base_type_, unsigned *member_count_) {
		LLVMTypeKind kind = LLVMGetTypeKind(type);
		switch (kind) {
		case LLVMFloatTypeKind:
		case LLVMDoubleTypeKind:
			if (base_type_) *base_type_ = type;
			if (member_count_) *member_count_ = 1;
			return true;
		case LLVMArrayTypeKind:
			return is_homogenous_array(c, type, base_type_, member_count_);
		case LLVMStructTypeKind:
			return is_homogenous_struct(c, type, base_type_, member_count_);
		}
		return false;
	}

	unsigned is_homogenous_aggregate_small_enough(LLVMTypeRef base_type, unsigned member_count) {
		return (member_count <= 4);
	}

	lbArgType compute_return_type(LLVMContextRef c, LLVMTypeRef type, bool return_is_defined) {
		LLVMTypeRef homo_base_type = nullptr;
		unsigned homo_member_count = 0;

		if (!return_is_defined) {
			return lb_arg_type_direct(LLVMVoidTypeInContext(c));
		} else if (is_register(type)) {
			return non_struct(c, type);
		} else if (is_homogenous_aggregate(c, type, &homo_base_type, &homo_member_count)) {
			if (is_homogenous_aggregate_small_enough(homo_base_type, homo_member_count)) {
				return lb_arg_type_direct(type, LLVMArrayType(homo_base_type, homo_member_count), nullptr, nullptr);
			} else {
				//TODO(Platin): do i need to create stuff that can handle the diffrent return type?
				//              else this needs a fix in llvm_backend_proc as we would need to cast it to the correct array type

				//LLVMTypeRef array_type = LLVMArrayType(homo_base_type, homo_member_count);
				LLVMAttributeRef attr = lb_create_enum_attribute_with_type(c, "sret", type);
				return lb_arg_type_indirect(type, attr);
			}
		} else {
			i64 size = lb_sizeof(type);
			if (size <= 16) {
				LLVMTypeRef cast_type = nullptr;
				if (size <= 1) {
					cast_type = LLVMInt8TypeInContext(c);
				} else if (size <= 2) {
					cast_type = LLVMInt16TypeInContext(c);
				} else if (size <= 4) {
					cast_type = LLVMInt32TypeInContext(c);
				} else if (size <= 8) {
					cast_type = LLVMInt64TypeInContext(c);
				} else {
					unsigned count = cast(unsigned)((size+7)/8);
					cast_type = LLVMArrayType(LLVMInt64TypeInContext(c), count);
				}
				return lb_arg_type_direct(type, cast_type, nullptr, nullptr);
			} else {
				LLVMAttributeRef attr = lb_create_enum_attribute_with_type(c, "sret", type);
				return lb_arg_type_indirect(type, attr);
			}
		}
	}
    
	Array<lbArgType> compute_arg_types(LLVMContextRef c, LLVMTypeRef *arg_types, unsigned arg_count) {
		auto args = array_make<lbArgType>(heap_allocator(), arg_count);

		for (unsigned i = 0; i < arg_count; i++) {
			LLVMTypeRef type = arg_types[i];

			LLVMTypeRef homo_base_type = {};
			unsigned homo_member_count = 0;

			if (is_register(type)) {
				args[i] = non_struct(c, type);
			} else if (is_homogenous_aggregate(c, type, &homo_base_type, &homo_member_count)) {
				args[i] = lb_arg_type_direct(type, LLVMArrayType(homo_base_type, homo_member_count), nullptr, nullptr);
			} else {
				i64 size = lb_sizeof(type);
				if (size <= 16) {
					LLVMTypeRef cast_type = nullptr;
					if (size <= 1) {
						cast_type = LLVMIntTypeInContext(c, 8);
					} else if (size <= 2) {
						cast_type = LLVMIntTypeInContext(c, 16);
					} else if (size <= 4) {
						cast_type = LLVMIntTypeInContext(c, 32);
					} else if (size <= 8) {
						cast_type = LLVMIntTypeInContext(c, 64);
					} else {
						unsigned count = cast(unsigned)((size+7)/8);
						cast_type = LLVMArrayType(LLVMIntTypeInContext(c, 64), count);
					}
					args[i] = lb_arg_type_direct(type, cast_type, nullptr, nullptr);
				} else {
					args[i] = lb_arg_type_indirect(type, nullptr);
				}
			}
		}
		return args;
	}
}

namespace lbAbiWasm {
	/*
		NOTE(bill): All of this is custom since there is not an "official"
		            ABI definition for WASM, especially for Odin.
		            The approach taken optimizes for passing things in multiple
		            registers/arguments if possible rather than by pointer.
	*/
	Array<lbArgType> compute_arg_types(LLVMContextRef c, LLVMTypeRef *arg_types, unsigned arg_count);
	lbArgType compute_return_type(LLVMContextRef c, LLVMTypeRef return_type, bool return_is_defined);

	enum {MAX_DIRECT_STRUCT_SIZE = 32};

	LB_ABI_INFO(abi_info) {
		lbFunctionType *ft = gb_alloc_item(permanent_allocator(), lbFunctionType);
		ft->ctx = c;
		ft->args = compute_arg_types(c, arg_types, arg_count);
		ft->ret = compute_return_type(c, return_type, return_is_defined);
		ft->calling_convention = calling_convention;
		return ft;
	}

	lbArgType non_struct(LLVMContextRef c, LLVMTypeRef type, bool is_return) {
		if (!is_return && type == LLVMIntTypeInContext(c, 128)) {
			LLVMTypeRef cast_type = LLVMVectorType(LLVMInt64TypeInContext(c), 2);
			return lb_arg_type_direct(type, cast_type, nullptr, nullptr);
		}
		
		if (!is_return && lb_sizeof(type) > 8) {
			return lb_arg_type_indirect(type, nullptr);
		}

		LLVMAttributeRef attr = nullptr;
		LLVMTypeRef i1 = LLVMInt1TypeInContext(c);
		if (type == i1) {
			attr = lb_create_enum_attribute(c, "zeroext");
		}
		return lb_arg_type_direct(type, nullptr, nullptr, attr);
	}
	
	bool is_basic_register_type(LLVMTypeRef type) {
		switch (LLVMGetTypeKind(type)) {
		case LLVMHalfTypeKind:
		case LLVMFloatTypeKind:
		case LLVMDoubleTypeKind:
		case LLVMPointerTypeKind:
			return true;
		case LLVMIntegerTypeKind:
			return lb_sizeof(type) <= 8;
		}	
		return false;
	}

	bool type_can_be_direct(LLVMTypeRef type) {
		LLVMTypeKind kind = LLVMGetTypeKind(type);
		i64 sz = lb_sizeof(type);
		if (sz == 0) {
			return false;
		}
		if (sz <= MAX_DIRECT_STRUCT_SIZE) {
			if (kind == LLVMArrayTypeKind) {
				if (is_basic_register_type(OdinLLVMGetArrayElementType(type))) {
					return true;
				}
			} else if (kind == LLVMStructTypeKind) {
				unsigned count = LLVMCountStructElementTypes(type);
				for (unsigned i = 0; i < count; i++) {
					LLVMTypeRef elem = LLVMStructGetTypeAtIndex(type, i);
					if (!is_basic_register_type(elem)) {
						return false;
					}

				}
				return true;
			}
		}
		return false;
	}

	lbArgType is_struct(LLVMContextRef c, LLVMTypeRef type) {
		LLVMTypeKind kind = LLVMGetTypeKind(type);
		GB_ASSERT(kind == LLVMArrayTypeKind || kind == LLVMStructTypeKind);
		
		i64 sz = lb_sizeof(type);
		if (sz == 0) {
			return lb_arg_type_ignore(type);
		}
		if (type_can_be_direct(type)) {
			return lb_arg_type_direct(type);
		}
		return lb_arg_type_indirect(type, nullptr);
	}
	

	Array<lbArgType> compute_arg_types(LLVMContextRef c, LLVMTypeRef *arg_types, unsigned arg_count) {
		auto args = array_make<lbArgType>(heap_allocator(), arg_count);

		for (unsigned i = 0; i < arg_count; i++) {
			LLVMTypeRef t = arg_types[i];
			LLVMTypeKind kind = LLVMGetTypeKind(t);
			if (kind == LLVMStructTypeKind || kind == LLVMArrayTypeKind) {
				args[i] = is_struct(c, t);
			} else {
				args[i] = non_struct(c, t, false);
			}
		}
		return args;
	}

	lbArgType compute_return_type(LLVMContextRef c, LLVMTypeRef return_type, bool return_is_defined) {
		if (!return_is_defined) {
			return lb_arg_type_direct(LLVMVoidTypeInContext(c));
		} else if (lb_is_type_kind(return_type, LLVMStructTypeKind) || lb_is_type_kind(return_type, LLVMArrayTypeKind)) {
			if (type_can_be_direct(return_type)) {
				return lb_arg_type_direct(return_type);
			}

			i64 sz = lb_sizeof(return_type);
			switch (sz) {
			case 1: return lb_arg_type_direct(return_type, LLVMIntTypeInContext(c, 8),  nullptr, nullptr);
			case 2: return lb_arg_type_direct(return_type, LLVMIntTypeInContext(c, 16), nullptr, nullptr);
			case 4: return lb_arg_type_direct(return_type, LLVMIntTypeInContext(c, 32), nullptr, nullptr);
			case 8: return lb_arg_type_direct(return_type, LLVMIntTypeInContext(c, 64), nullptr, nullptr);
			}
			LLVMAttributeRef attr = lb_create_enum_attribute_with_type(c, "sret", return_type);
			return lb_arg_type_indirect(return_type, attr);
		}
		return non_struct(c, return_type, true);
	}
}

namespace lbAbiArm32 {
	Array<lbArgType> compute_arg_types(LLVMContextRef c, LLVMTypeRef *arg_types, unsigned arg_count, ProcCallingConvention calling_convention);
	lbArgType compute_return_type(LLVMContextRef c, LLVMTypeRef return_type, bool return_is_defined);

	LB_ABI_INFO(abi_info) {
		lbFunctionType *ft = gb_alloc_item(permanent_allocator(), lbFunctionType);
		ft->ctx = c;
		ft->args = compute_arg_types(c, arg_types, arg_count, calling_convention);
		ft->ret = compute_return_type(c, return_type, return_is_defined);
		ft->calling_convention = calling_convention;
		return ft;
	}

	bool is_register(LLVMTypeRef type, bool is_return) {
		LLVMTypeKind kind = LLVMGetTypeKind(type);
		switch (kind) {
		case LLVMHalfTypeKind:
		case LLVMFloatTypeKind:
		case LLVMDoubleTypeKind:
			return true;
		case LLVMIntegerTypeKind:
			return lb_sizeof(type) <= 8;
		case LLVMFunctionTypeKind:
			return true;
		case LLVMPointerTypeKind:
			return true;
		case LLVMVectorTypeKind:
			return true;
		}
		return false;
	}

	lbArgType non_struct(LLVMContextRef c, LLVMTypeRef type, bool is_return) {
		LLVMAttributeRef attr = nullptr;
		LLVMTypeRef i1 = LLVMInt1TypeInContext(c);
		if (type == i1) {
			attr = lb_create_enum_attribute(c, "zeroext");
		}
		return lb_arg_type_direct(type, nullptr, nullptr, attr);
	}

	Array<lbArgType> compute_arg_types(LLVMContextRef c, LLVMTypeRef *arg_types, unsigned arg_count, ProcCallingConvention calling_convention) {
		auto args = array_make<lbArgType>(heap_allocator(), arg_count);

		for (unsigned i = 0; i < arg_count; i++) {
			LLVMTypeRef t = arg_types[i];
			if (is_register(t, false)) {
				args[i] = non_struct(c, t, false);
			} else {
				i64 sz = lb_sizeof(t);
				i64 a = lb_alignof(t);
				if (is_calling_convention_odin(calling_convention) && sz > 8) {
					// Minor change to improve performance using the Odin calling conventions
					args[i] = lb_arg_type_indirect(t, nullptr);
				} else if (a <= 4) {
					unsigned n = cast(unsigned)((sz + 3) / 4);
					args[i] = lb_arg_type_direct(LLVMArrayType(LLVMIntTypeInContext(c, 32), n));
				} else {
					unsigned n = cast(unsigned)((sz + 7) / 8);
					args[i] = lb_arg_type_direct(LLVMArrayType(LLVMIntTypeInContext(c, 64), n));
				}
			}
		}
		return args;
	}

	lbArgType compute_return_type(LLVMContextRef c, LLVMTypeRef return_type, bool return_is_defined) {
		if (!return_is_defined) {
			return lb_arg_type_direct(LLVMVoidTypeInContext(c));
		} else if (!is_register(return_type, true)) {
			switch (lb_sizeof(return_type)) {
			case 1:         return lb_arg_type_direct(LLVMIntTypeInContext(c, 8),  return_type, nullptr, nullptr);
			case 2:         return lb_arg_type_direct(LLVMIntTypeInContext(c, 16), return_type, nullptr, nullptr);
			case 3: case 4: return lb_arg_type_direct(LLVMIntTypeInContext(c, 32), return_type, nullptr, nullptr);
			}
			LLVMAttributeRef attr = lb_create_enum_attribute_with_type(c, "sret", return_type);
			return lb_arg_type_indirect(return_type, attr);
		}
		return non_struct(c, return_type, true);
	}
};


LB_ABI_INFO(lb_get_abi_info) {
	switch (calling_convention) {
	case ProcCC_None:
	case ProcCC_InlineAsm:
		{
			lbFunctionType *ft = gb_alloc_item(permanent_allocator(), lbFunctionType);
			ft->ctx = c;
			ft->args = array_make<lbArgType>(heap_allocator(), arg_count);
			for (unsigned i = 0; i < arg_count; i++) {
				ft->args[i] = lb_arg_type_direct(arg_types[i]);
			}
			if (return_is_defined) {
				ft->ret = lb_arg_type_direct(return_type);
			} else {
				ft->ret = lb_arg_type_direct(LLVMVoidTypeInContext(c));
			}
			ft->calling_convention = calling_convention;
			return ft;
		}
	case ProcCC_Win64:
		GB_ASSERT(build_context.metrics.arch == TargetArch_amd64);
		return lbAbiAmd64Win64::abi_info(c, arg_types, arg_count, return_type, return_is_defined, calling_convention);
	case ProcCC_SysV:
		GB_ASSERT(build_context.metrics.arch == TargetArch_amd64);
		return lbAbiAmd64SysV::abi_info(c, arg_types, arg_count, return_type, return_is_defined, calling_convention);
	}

	switch (build_context.metrics.arch) {
	case TargetArch_amd64:
		if (build_context.metrics.os == TargetOs_windows || build_context.metrics.abi == TargetABI_Win64) {
			return lbAbiAmd64Win64::abi_info(c, arg_types, arg_count, return_type, return_is_defined, calling_convention);
		} else if (build_context.metrics.abi == TargetABI_SysV) {
			return lbAbiAmd64SysV::abi_info(c, arg_types, arg_count, return_type, return_is_defined, calling_convention);
		} else {
			return lbAbiAmd64SysV::abi_info(c, arg_types, arg_count, return_type, return_is_defined, calling_convention);
		}
	case TargetArch_i386:
		return lbAbi386::abi_info(c, arg_types, arg_count, return_type, return_is_defined, calling_convention);
	case TargetArch_arm32:
		return lbAbiArm32::abi_info(c, arg_types, arg_count, return_type, return_is_defined, calling_convention);
	case TargetArch_arm64:
		return lbAbiArm64::abi_info(c, arg_types, arg_count, return_type, return_is_defined, calling_convention);
	case TargetArch_wasm32:
	case TargetArch_wasm64:
		return lbAbiWasm::abi_info(c, arg_types, arg_count, return_type, return_is_defined, calling_convention);
	}

	GB_PANIC("Unsupported ABI");
	return {};
}