aboutsummaryrefslogtreecommitdiff
path: root/tests/core/math/big/generate_tests.py
blob: 032d7ef38109228564767eae2bac8f04e2b295ce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
#
#	Copyright 2021 Jeroen van Rijn <nom@duclavier.com>.
#	Made available under Odin's license.
#
#	A BigInt implementation in Odin.
#	For the theoretical underpinnings, see Knuth's The Art of Computer Programming, Volume 2, section 4.3.
#	The code started out as an idiomatic source port of libTomMath, which is in the public domain, with thanks.
#

from random import *
import math
import os
import platform
import time
import gc
from enum import Enum
import argparse

LEG_BITS = 60

vectors = open('../test_vectors.odin', 'w')
vectors.write("""package test_core_math_big

import "core:math/big"

// GENERATED -=- GENERATED -=- GENERATED -=- GENERATED -=- GENERATED -=- GENERATED -=- GENERATED -=- GENERATED -=- GENERATED
//
// This file is generated using `test_generator.py`
//
// GENERATED -=- GENERATED -=- GENERATED -=- GENERATED -=- GENERATED -=- GENERATED -=- GENERATED -=- GENERATED -=- GENERATED

Big_Test_Operation :: enum {
	Add,
	Sub,
	Mul,
	Div,
	Sqr,
	Log,
	Sqrt,
	Pow,
	Root,
	Shl,
	Shr,
	Shr_Signed,
	Factorial,
	Gcd,
	Lcm,
	Is_Square,
}

Big_Test_Vector :: struct {
	op:  Big_Test_Operation,
	a:   string,
	b:   string,
	exp: string,
	err: big.Error,
}

big_test_vectors := []Big_Test_Vector{
""")

parser = argparse.ArgumentParser(
	description     = "Odin core:math/big test suite generator",
	epilog          = "By default we generate regression and random tests with preset parameters.",
    formatter_class = argparse.ArgumentDefaultsHelpFormatter,
)

#
# We skip randomized tests altogether if this is set.
#
no_random = parser.add_mutually_exclusive_group()

no_random.add_argument(
	"-no-random",
	help    = "Don't generate random tests",
	action  = "store_true",
)

#
# Normally we run a given number of cycles on each test.
# Timed tests budget 1 second per 20_000 bits instead.
#
# For timed tests we budget a second per `n` bits and iterate until we hit that time.
#
timed_or_fast = no_random.add_mutually_exclusive_group()

timed_or_fast.add_argument(
	"-timed",
	type    = bool,
	default = False,
	help    = "Timed tests instead of a preset number of iterations.",
)
parser.add_argument(
	"-timed-bits",
	type    = int,
	metavar = "BITS",
	default = 20_000,
	help    = "Timed tests. Every `BITS` worth of input is given a second of running time.",
)

#
# For normal tests (non-timed), `-fast-tests` cuts down on the number of iterations.
#
timed_or_fast.add_argument(
	"-fast-tests",
	help    = "Cut down on the number of iterations of each test",
	action  = "store_true",
)

args = parser.parse_args()

#
# How many iterations of each random test do we want to run?
#
BITS_AND_ITERATIONS = [
	(   120, 100),
	( 1_200, 100),
	( 4_096, 100),
	(12_000,  10),
]

if args.fast_tests:
	for k in range(len(BITS_AND_ITERATIONS)):
		b, i = BITS_AND_ITERATIONS[k]
		BITS_AND_ITERATIONS[k] = (b, i // 10 if i >= 100 else 5)

if args.no_random:
	BITS_AND_ITERATIONS = []

TOTAL_TIME  = 0
UNTIL_TIME  = 0
UNTIL_ITERS = 0

def we_iterate():
	if args.timed:
		return TOTAL_TIME < UNTIL_TIME
	else:
		global UNTIL_ITERS
		UNTIL_ITERS -= 1
		return UNTIL_ITERS != -1

#
# Error enum values
#
class Error(Enum):
	Okay                    = 0
	Out_Of_Memory           = 1
	Invalid_Pointer         = 2
	Invalid_Argument        = 3
	Unknown_Error           = 4
	Assignment_To_Immutable = 10
	Max_Iterations_Reached  = 11
	Buffer_Overflow         = 12
	Integer_Overflow        = 13
	Integer_Underflow       = 14
	Division_by_Zero        = 30
	Math_Domain_Error       = 31
	Cannot_Open_File        = 50
	Cannot_Read_File        = 51
	Cannot_Write_File       = 52
	Unimplemented           = 127

#
# Disable garbage collection
#
gc.disable()

def arg_to_odin(a):
	if a >= 0:
		s = hex(a)[2:]
	else:
		s = '-' + hex(a)[3:]
	return s.encode('utf-8')


def big_integer_sqrt(src):
	# The Python version on Github's CI doesn't offer math.isqrt.
	# We implement our own
	count = src.bit_length()
	a, b = count >> 1, count & 1

	x = 1 << (a + b)

	while True:
		# y = (x + n // x) // 2
		t1 = src // x
		t2 = t1  + x
		y = t2 >> 1

		if y >= x:
			return x

		x, y = y, x

def big_integer_lcm(a, b):
	# Computes least common multiple as `|a*b|/gcd(a,b)`
	# Divide the smallest by the GCD.

	if a == 0 or b == 0:
		return 0

	if abs(a) < abs(b):
		# Store quotient in `t2` such that `t2 * b` is the LCM.
		lcm = a // math.gcd(a, b)
		return abs(b * lcm)
	else:
		# Store quotient in `t2` such that `t2 * a` is the LCM.
		lcm = b // math.gcd(a, b)
		return abs(a * lcm)

def write_test_case(op = "", a = 0, b = 0, expected_result = 0, expected_error = Error.Okay):
	def test_arg_to_odin(a):
		if a >= 0:
			s = hex(a)[2:]
		else:
			s = '-' + hex(a)[3:]
		return s

	vectors.write("\t{{{}, ".format(op))
	vectors.write("\"{}\", ".format(test_arg_to_odin(a)))
	vectors.write("\"{}\", ".format(test_arg_to_odin(b)))
	if expected_result == None:
		vectors.write("\"0\", ")
	else:
		vectors.write("\"{}\", ".format(test_arg_to_odin(expected_result)))

	vectors.write("{}}},\n".format(expected_error)[5:])

def test_add(a = 0, b = 0, expected_error = Error.Okay):
	args = [arg_to_odin(a), arg_to_odin(b)]
	expected_result = None
	if expected_error == Error.Okay:
		expected_result = a + b

	write_test_case(".Add", a, b, expected_result, expected_error)

def test_sub(a = 0, b = 0, expected_error = Error.Okay):
	args = [arg_to_odin(a), arg_to_odin(b)]
	expected_result = None
	if expected_error == Error.Okay:
		expected_result = a - b

	write_test_case(".Sub", a, b, expected_result, expected_error)

def test_mul(a = 0, b = 0, expected_error = Error.Okay):
	args = [arg_to_odin(a), arg_to_odin(b)]
	expected_result = None
	if expected_error == Error.Okay:
		expected_result = a * b

	write_test_case(".Mul", a, b, expected_result, expected_error)

def test_sqr(a = 0, b = 0, expected_error = Error.Okay):
	args = [arg_to_odin(a)]
	expected_result = None
	if expected_error == Error.Okay:
		expected_result = a * a

	write_test_case(".Sqr", a, b, expected_result, expected_error)

def test_div(a = 0, b = 0, expected_error = Error.Okay):
	args = [arg_to_odin(a), arg_to_odin(b)]
	expected_result = None
	if expected_error == Error.Okay:
		#
		# We don't round the division results, so if one component is negative, we're off by one.
		#
		if a < 0 and b > 0:
			expected_result = int(-(abs(a) // b))
		elif b < 0 and a > 0:
			expected_result = int(-(a // abs((b))))
		else:
			expected_result = a // b if b != 0 else None

	write_test_case(".Div", a, b, expected_result, expected_error)

def test_log(a = 0, base = 0, expected_error = Error.Okay):
	args = [arg_to_odin(a), base]
	expected_result = None
	if expected_error == Error.Okay:
		expected_result = int(math.log(a, base))

	write_test_case(".Log", a, base, expected_result, expected_error)

def test_pow(base = 0, power = 0, expected_error = Error.Okay):
	args = [arg_to_odin(base), power]
	expected_result = None
	if expected_error == Error.Okay:
		if power < 0:
			expected_result = 0
		else:
			# NOTE(Jeroen): Don't use `math.pow`, it's a floating point approximation.
			#               Use built-in `pow` or `a**b` instead.
			expected_result = pow(base, power)

	write_test_case(".Pow", base, power, expected_result, expected_error)

def test_sqrt(number = 0, expected_error = Error.Okay):
	args  = [arg_to_odin(number)]
	expected_result = None
	if expected_error == Error.Okay:
		if number < 0:
			expected_result = 0
		else:
			expected_result = big_integer_sqrt(number)

	write_test_case(".Sqrt", number, 0, expected_result, expected_error)

def root_n(number, root):
	u, s = number, number + 1
	while u < s:
		s = u
		t = (root-1) * s + number // pow(s, root - 1)
		u = t // root
	return s

def test_root_n(number = 0, root = 0, expected_error = Error.Okay):
	args = [arg_to_odin(number), root]
	expected_result = None
	if expected_error == Error.Okay:
		if number < 0:
			expected_result = 0
		else:
			expected_result = root_n(number, root)

	write_test_case(".Root", number, root, expected_result, expected_error)

def test_shl_leg(a = 0, digits = 0, expected_error = Error.Okay):
	args  = [arg_to_odin(a), digits]
	expected_result = None
	if expected_error == Error.Okay:
		expected_result = a << (digits * LEG_BITS)

	write_test_case(".Shl", a, (digits * LEG_BITS), expected_result, expected_error)

def test_shr_leg(a = 0, digits = 0, expected_error = Error.Okay):
	args  = [arg_to_odin(a), digits]
	expected_result = None
	if expected_error == Error.Okay:
		if a < 0:
			# Don't pass negative numbers. We have a shr_signed.
			return False
		else:
			expected_result = a >> (digits * LEG_BITS)

	write_test_case(".Shr", a, (digits * LEG_BITS), expected_result, expected_error)

def test_shl(a = 0, bits = 0, expected_error = Error.Okay):
	args  = [arg_to_odin(a), bits]
	expected_result = None
	if expected_error == Error.Okay:
		expected_result = a << bits

	write_test_case(".Shl", a, bits, expected_result, expected_error)

def test_shr(a = 0, bits = 0, expected_error = Error.Okay):
	args  = [arg_to_odin(a), bits]
	expected_result = None
	if expected_error == Error.Okay:
		if a < 0:
			# Don't pass negative numbers. We have a shr_signed.
			return False
		else:
			expected_result = a >> bits

	write_test_case(".Shr", a, bits, expected_result, expected_error)

def test_shr_signed(a = 0, bits = 0, expected_error = Error.Okay):
	args  = [arg_to_odin(a), bits]
	expected_result = None
	if expected_error == Error.Okay:
		expected_result = a >> bits

	write_test_case(".Shr_Signed", a, bits, expected_result, expected_error)

def test_factorial(number = 0, expected_error = Error.Okay):
	args  = [number]
	expected_result = None
	if expected_error == Error.Okay:
		expected_result = math.factorial(number)

	write_test_case(".Factorial", number, 0, expected_result, expected_error)

def test_gcd(a = 0, b = 0, expected_error = Error.Okay):
	args  = [arg_to_odin(a), arg_to_odin(b)]
	expected_result = None
	if expected_error == Error.Okay:
		expected_result = math.gcd(a, b)

	write_test_case(".Gcd", a, b, expected_result, expected_error)

def test_lcm(a = 0, b = 0, expected_error = Error.Okay):
	args  = [arg_to_odin(a), arg_to_odin(b)]
	expected_result = None
	if expected_error == Error.Okay:
		expected_result = big_integer_lcm(a, b)

	write_test_case(".Lcm", a, b, expected_result, expected_error)

def test_is_square(a = 0, b = 0, expected_error = Error.Okay):
	args  = [arg_to_odin(a)]
	expected_result = False
	if expected_error == Error.Okay and a > 0:
		expected_result = big_integer_sqrt(a) ** 2 == a

	write_test_case(".Is_Square", a, 0, expected_result, expected_error)

# TODO(Jeroen): Make sure tests cover edge cases, fast paths, and so on.
#
# The last two arguments in tests are the expected error and expected result.
#
# The expected error defaults to None.
# By default the Odin implementation will be tested against the Python one.
# You can override that by supplying an expected result as the last argument instead.

TESTS = {
	test_add: [
		[ 1234,   5432],
	],
	test_sub: [
		[ 1234,   5432],
	],
	test_mul: [
		[ 1234,   5432],
		[ 0xd3b4e926aaba3040e1c12b5ea553b5, 0x1a821e41257ed9281bee5bc7789ea7 ],
		[ 1 << 21_105, 1 << 21_501 ],
		[
			0x200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000,
			0x200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000,
		]
	],
	test_sqr: [
		[ 5432],
		[ 0xd3b4e926aaba3040e1c12b5ea553b5 ],
	],
	test_div: [
		[ 54321,	12345],
		[ 55431,		0, Error.Division_by_Zero],
		[ 12980742146337069150589594264770969721, 4611686018427387904 ],
		[   831956404029821402159719858789932422, 243087903122332132 ],
	],
	test_log: [
		[ 3192,			1, Error.Invalid_Argument],
		[ -1234,		2, Error.Math_Domain_Error],
		[ 0,			2, Error.Math_Domain_Error],
		[ 1024,			2],
	],
	test_pow: [
		[ 0,  -1, Error.Math_Domain_Error ], # Math
		[ 0,   0 ], # 1
		[ 0,   2 ], # 0
		[ 42, -1,], # 0
		[ 42,  1 ], # 1
		[ 42,  0 ], # 42
		[ 42,  2 ], # 42*42
		[ 1023423462055631945665902260039819522, 6],
		[ 2351415513563017480724958108064794964140712340951636081608226461329298597792428177392182921045756382154475969841516481766099091057155043079113409578271460350765774152509347176654430118446048617733844782454267084644777022821998489944144604889308377152515711394170267839394315842510152114743680838721625924309675796181595284284935359605488617487126635442626578631, 4],
	],
	test_sqrt: [
		[  -1, Error.Invalid_Argument, ],
		[  42, Error.Okay, ],
		[  12345678901234567890, Error.Okay, ],
		[  1298074214633706907132624082305024, Error.Okay, ],
		[  0xa85e79177036820e9e63d14514884413c283db3dba2771f66ec888ae94fe253826ed3230efc1de0cbb4a2ba16fede5fe980d232472cca9e8f339714c56a9e64b5cff7538c33773f128898e8cad47234e8a086b4ce5b902231e2da75cc6cb510d892feb9c9c19ee5f5b7967cb7f081fb79099afe2d20203b0693ecc95c656e5515e0903a4ebc84d22fc2a176ba36dd795195535cfdf473e547930fbd6eae51ad11e974198b4733a10115f391c0fefd22654f5acd63c6415d4cbdaad6c1fc1812333d701b64bb230307fb37911561f5287efd67c2eec5a26a694931aec299c67874881bab0c42941cf0f4ef8ca3548e1adcc7f712eb714762184d656385ceacc7b9f75620dfa7ec62b70ee92a5998cee14ad2b9df3f0c861678bc3311c1fe78c5ce4ed30b90c56d18d50261a4f46fdbf6af94737920b50adf1229503edea8b32900000697f366eba632074a66dcd9999a1510ccefa6110bac2207602b16cd4ce42a36fbf276b5b14550faf75194256f175a867169ff30f8e4770d094b617e3df29612359e33d2a3e8f4e12acf243a22b2732e35a5039fea630886e80f49fb310cb34cd1ecb0dc3036761ac8eed5e2e3d6ea88c5b2f552405149fcb100f50368e969c7d1d45db10ea868838dddc3fbc54c9b658761522c31e46661f46205a6c8783d60638db10bc9515ece8509aa181332207c5a2753ee4a8297a65695fbd8184de, Error.Okay, ],
	],
	test_root_n: [
		[  1298074214633706907132624082305024, 2, Error.Okay, ],	
	],
	test_shl_leg: [
		[ 3192,			1 ],
		[ 1298074214633706907132624082305024, 2 ],
		[ 1024,			3 ],
	],
	test_shr_leg: [
		[ 3680125442705055547392, 1 ],
		[ 1725436586697640946858688965569256363112777243042596638790631055949824, 2 ],
		[ 219504133884436710204395031992179571, 2 ],
	],
	test_shl: [
		[ 3192,			1 ],
		[ 1298074214633706907132624082305024, 2 ],
		[ 1024,			3 ],
	],
	test_shr: [
		[ 3680125442705055547392, 1 ],
		[ 1725436586697640946858688965569256363112777243042596638790631055949824, 2 ],
		[ 219504133884436710204395031992179571, 2 ],
	],
	test_shr_signed: [
		[ -611105530635358368578155082258244262, 12 ],
		[ -149195686190273039203651143129455, 12 ],
		[ 611105530635358368578155082258244262, 12 ],
		[ 149195686190273039203651143129455, 12 ],
	],
	test_factorial: [
		[  6_000 ],   # Regular factorial, see cutoff in common.odin.
		[ 12_345 ],   # Binary split factorial
	],
	test_gcd: [
		[  23, 25, ],
		[ 125, 25, ],
		[ 125, 0,  ],
		[   0, 0,  ],
		[   0, 125,],
	],
	test_lcm: [
		[  23,  25,],
		[ 125, 25, ],
		[ 125, 0,  ],
		[   0, 0,  ],
		[   0, 125,],
	],
	test_is_square: [
		[ 12, ],
		[ 0x4fa3f9fe4edb58bfae7bab80b94ffce6e02cdd067c509f75a5918e510d002a8b41949dee96f482678b6e593ee2a984aa68809af5bdc3c0ee839c588b3b619e0f4a5267a7533765f8621dd20994a9a5bdd7faca4aab4f84a72f4f30d623a44cbc974d48e7ab63259d3141da5467e0a2225d90e6388f8d05e0bcdcb67f6d11c4e17d4c168b9fb23bf0932d6082ed82241b01d7d80bb43bf516fc650d86d62e13df218557df8b3f2e4eb295485e3f221c01130791c0b1b4c77fae4ae98e000e42d943a1dff9bfd960fdabe6a729913f99d74b1a7736c213b6c134bbc6914e0b5ae9d1909a32c2084af5a49a99a97a8c3856fdf1e4ff39306ede6234f85f0dca94382a118d97058d0be641c7b0cecead08450042a56dff16808115f78857d8844df61d8e930427d410ee33a63c79, ]
	],
}

if not args.fast_tests:
	TESTS[test_factorial].append(
		# This one on its own takes around 800ms, so we exclude it for FAST_TESTS
		[ 10_000 ],
	)

total_passes   = 0
total_failures = 0

#
# test_shr_signed also tests shr, so we're not going to test shr randomly.
#
RANDOM_TESTS = [
	test_add,     test_sub,     test_mul,       test_sqr,
	test_log,     test_pow,     test_sqrt,      test_root_n,
	test_shl_leg, test_shr_leg, test_shl,       test_shr_signed,
	test_gcd,     test_lcm,     test_is_square, test_div,
]
SKIP_LARGE   = [
	test_pow, test_root_n, # test_gcd,
]
SKIP_LARGEST = []

# Untimed warmup.
for test_proc in TESTS:
	for t in TESTS[test_proc]:
		res   = test_proc(*t)

if __name__ == '__main__':
	print("\n---- math/big tests ----")
	print()

	max_name = 0
	for test_proc in TESTS:
		max_name = max(max_name, len(test_proc.__name__))

	fmt_string = "{name:>{max_name}}, {test_count} tests"
	fmt_string = fmt_string.replace("{max_name}", str(max_name))

	for test_proc in TESTS:
		count = 0
		for t in TESTS[test_proc]:
			count += 1
			test_proc(*t)

		print(fmt_string.format(name=test_proc.__name__, test_count=count))

	for BITS, ITERATIONS in BITS_AND_ITERATIONS:
		print()		
		print("---- math/big with two random {bits:,} bit numbers ----".format(bits=BITS))
		print()

		#
		# We've already tested up to the 10th root.
		#
		TEST_ROOT_N_PARAMS = [2, 3, 4, 5, 6]

		for test_proc in RANDOM_TESTS:
			if BITS >  1_200 and test_proc in SKIP_LARGE: continue
			if BITS >  4_096 and test_proc in SKIP_LARGEST: continue

			count = 0

			UNTIL_ITERS = ITERATIONS
			if test_proc == test_root_n and BITS == 1_200:
				UNTIL_ITERS /= 10

			UNTIL_TIME  = TOTAL_TIME + BITS / args.timed_bits
			# We run each test for a second per 20k bits

			index = 0

			while we_iterate():
				a = randint(-(1 << BITS), 1 << BITS)
				b = randint(-(1 << BITS), 1 << BITS)

				if test_proc == test_div:
					# We've already tested division by zero above.
					bits = int(BITS * 0.6)
					b = randint(-(1 << bits), 1 << bits)
					if b == 0:
						b == 42
				elif test_proc == test_log:
					# We've already tested log's domain errors.
					a = randint(1, 1 << BITS)
					b = randint(2, 1 << 60)
				elif test_proc == test_pow:
					b = randint(1, 10)
				elif test_proc == test_sqrt:
					a = randint(1, 1 << BITS)
					b = Error.Okay
				elif test_proc == test_root_n:
					a = randint(1, 1 << BITS)
					b = TEST_ROOT_N_PARAMS[index]
					index = (index + 1) % len(TEST_ROOT_N_PARAMS)
				elif test_proc == test_shl_leg:
					b = randint(0, 10);
				elif test_proc == test_shr_leg:
					a = abs(a)
					b = randint(0, 10);
				elif test_proc == test_shl:
					b = randint(0, min(BITS, 120))
				elif test_proc == test_shr_signed:
					b = randint(0, min(BITS, 120))
				elif test_proc == test_is_square:
					a = randint(0, 1 << BITS)
				elif test_proc == test_lcm:
					smallest = min(a, b)
					biggest  = max(a, b)

					# Randomly swap biggest and smallest
					if randint(1, 11) % 2 == 0:
						smallest, biggest = biggest, smallest

					a, b = smallest, biggest
				else:
					b = randint(0, 1 << BITS)

				count += 1
				test_proc(a, b)

			print(fmt_string.format(name=test_proc.__name__, test_count=count))

	print()		
	print("---- THE END ----")

	vectors.write("}")

	if total_failures:
		exit(1)