1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
|
#
# Copyright 2021 Jeroen van Rijn <nom@duclavier.com>.
# Made available under Odin's BSD-3 license.
#
# A BigInt implementation in Odin.
# For the theoretical underpinnings, see Knuth's The Art of Computer Programming, Volume 2, section 4.3.
# The code started out as an idiomatic source port of libTomMath, which is in the public domain, with thanks.
#
from ctypes import *
from random import *
import math
import os
import platform
import time
import gc
from enum import Enum
import argparse
parser = argparse.ArgumentParser(
description = "Odin core:math/big test suite",
epilog = "By default we run regression and random tests with preset parameters.",
formatter_class = argparse.ArgumentDefaultsHelpFormatter,
)
#
# Normally, we report the number of passes and fails. With this option set, we exit at first fail.
#
parser.add_argument(
"-exit-on-fail",
help = "Exit when a test fails",
action = "store_true",
)
#
# We skip randomized tests altogether if this is set.
#
no_random = parser.add_mutually_exclusive_group()
no_random.add_argument(
"-no-random",
help = "No random tests",
action = "store_true",
)
#
# Normally we run a given number of cycles on each test.
# Timed tests budget 1 second per 20_000 bits instead.
#
# For timed tests we budget a second per `n` bits and iterate until we hit that time.
#
timed_or_fast = no_random.add_mutually_exclusive_group()
timed_or_fast.add_argument(
"-timed",
type = bool,
default = False,
help = "Timed tests instead of a preset number of iterations.",
)
parser.add_argument(
"-timed-bits",
type = int,
metavar = "BITS",
default = 20_000,
help = "Timed tests. Every `BITS` worth of input is given a second of running time.",
)
#
# For normal tests (non-timed), `-fast-tests` cuts down on the number of iterations.
#
timed_or_fast.add_argument(
"-fast-tests",
help = "Cut down on the number of iterations of each test",
action = "store_true",
)
args = parser.parse_args()
EXIT_ON_FAIL = args.exit_on_fail
#
# How many iterations of each random test do we want to run?
#
BITS_AND_ITERATIONS = [
( 120, 10_000),
( 1_200, 1_000),
( 4_096, 100),
(12_000, 10),
]
if args.fast_tests:
for k in range(len(BITS_AND_ITERATIONS)):
b, i = BITS_AND_ITERATIONS[k]
BITS_AND_ITERATIONS[k] = (b, i // 10 if i >= 100 else 5)
if args.no_random:
BITS_AND_ITERATIONS = []
#
# Where is the DLL? If missing, build using: `odin build . -build-mode:shared`
#
if platform.system() == "Windows":
LIB_PATH = os.getcwd() + os.sep + "math_big_test_library.dll"
elif platform.system() == "Linux":
LIB_PATH = os.getcwd() + os.sep + "math_big_test_library.so"
elif platform.system() == "Darwin":
LIB_PATH = os.getcwd() + os.sep + "math_big_test_library.dylib"
else:
print("Platform is unsupported.")
exit(1)
TOTAL_TIME = 0
UNTIL_TIME = 0
UNTIL_ITERS = 0
def we_iterate():
if args.timed:
return TOTAL_TIME < UNTIL_TIME
else:
global UNTIL_ITERS
UNTIL_ITERS -= 1
return UNTIL_ITERS != -1
#
# Error enum values
#
class Error(Enum):
Okay = 0
Out_Of_Memory = 1
Invalid_Pointer = 2
Invalid_Argument = 3
Unknown_Error = 4
Assignment_To_Immutable = 10
Max_Iterations_Reached = 11
Buffer_Overflow = 12
Integer_Overflow = 13
Integer_Underflow = 14
Division_by_Zero = 30
Math_Domain_Error = 31
Cannot_Open_File = 50
Cannot_Read_File = 51
Cannot_Write_File = 52
Unimplemented = 127
#
# Disable garbage collection
#
gc.disable()
#
# Set up exported procedures
#
try:
l = cdll.LoadLibrary(LIB_PATH)
except:
print("Couldn't find or load " + LIB_PATH + ".")
exit(1)
def load(export_name, args, res):
export_name.argtypes = args
export_name.restype = res
return export_name
#
# Result values will be passed in a struct { res: cstring, err: Error }
#
class Res(Structure):
_fields_ = [("res", c_char_p), ("err", c_uint64)]
initialize_constants = load(l.test_initialize_constants, [], c_uint64)
print("initialize_constants: ", initialize_constants())
error_string = load(l.test_error_string, [c_byte], c_char_p)
add = load(l.test_add, [c_char_p, c_char_p ], Res)
sub = load(l.test_sub, [c_char_p, c_char_p ], Res)
mul = load(l.test_mul, [c_char_p, c_char_p ], Res)
sqr = load(l.test_sqr, [c_char_p ], Res)
div = load(l.test_div, [c_char_p, c_char_p ], Res)
# Powers and such
int_log = load(l.test_log, [c_char_p, c_longlong], Res)
int_pow = load(l.test_pow, [c_char_p, c_longlong], Res)
int_sqrt = load(l.test_sqrt, [c_char_p ], Res)
int_root_n = load(l.test_root_n, [c_char_p, c_longlong], Res)
# Logical operations
int_shl_leg = load(l.test_shl_leg, [c_char_p, c_longlong], Res)
int_shr_leg = load(l.test_shr_leg, [c_char_p, c_longlong], Res)
int_shl = load(l.test_shl, [c_char_p, c_longlong], Res)
int_shr = load(l.test_shr, [c_char_p, c_longlong], Res)
int_shr_signed = load(l.test_shr_signed, [c_char_p, c_longlong], Res)
int_factorial = load(l.test_factorial, [c_uint64 ], Res)
int_gcd = load(l.test_gcd, [c_char_p, c_char_p ], Res)
int_lcm = load(l.test_lcm, [c_char_p, c_char_p ], Res)
is_square = load(l.test_is_square, [c_char_p ], Res)
def test(test_name: "", res: Res, param=[], expected_error = Error.Okay, expected_result = "", radix=16):
passed = True
r = None
err = Error(res.err)
if err != expected_error:
error_loc = res.res.decode('utf-8')
error = "{}: {} in '{}'".format(test_name, err, error_loc)
if len(param):
error += " with params {}".format(param)
print(error, flush=True)
passed = False
elif err == Error.Okay:
r = None
try:
r = res.res.decode('utf-8')
r = int(res.res, radix)
except:
pass
if r != expected_result:
error = "{}: Result was '{}', expected '{}'".format(test_name, r, expected_result)
if len(param):
error += " with params {}".format(param)
print(error, flush=True)
passed = False
if EXIT_ON_FAIL and not passed: exit(res.err)
return passed
def arg_to_odin(a):
if a >= 0:
s = hex(a)[2:]
else:
s = '-' + hex(a)[3:]
return s.encode('utf-8')
def big_integer_sqrt(src):
# The Python version on Github's CI doesn't offer math.isqrt.
# We implement our own
count = src.bit_length()
a, b = count >> 1, count & 1
x = 1 << (a + b)
while True:
# y = (x + n // x) // 2
t1 = src // x
t2 = t1 + x
y = t2 >> 1
if y >= x:
return x
x, y = y, x
def big_integer_lcm(a, b):
# Computes least common multiple as `|a*b|/gcd(a,b)`
# Divide the smallest by the GCD.
if a == 0 or b == 0:
return 0
if abs(a) < abs(b):
# Store quotient in `t2` such that `t2 * b` is the LCM.
lcm = a // math.gcd(a, b)
return abs(b * lcm)
else:
# Store quotient in `t2` such that `t2 * a` is the LCM.
lcm = b // math.gcd(a, b)
return abs(a * lcm)
def test_add(a = 0, b = 0, expected_error = Error.Okay):
args = [arg_to_odin(a), arg_to_odin(b)]
res = add(*args)
expected_result = None
if expected_error == Error.Okay:
expected_result = a + b
return test("test_add", res, [a, b], expected_error, expected_result)
def test_sub(a = 0, b = 0, expected_error = Error.Okay):
args = [arg_to_odin(a), arg_to_odin(b)]
res = sub(*args)
expected_result = None
if expected_error == Error.Okay:
expected_result = a - b
return test("test_sub", res, [a, b], expected_error, expected_result)
def test_mul(a = 0, b = 0, expected_error = Error.Okay):
args = [arg_to_odin(a), arg_to_odin(b)]
try:
res = mul(*args)
except OSError as e:
print("{} while trying to multiply {} x {}.".format(e, a, b))
if EXIT_ON_FAIL: exit(3)
return False
expected_result = None
if expected_error == Error.Okay:
expected_result = a * b
return test("test_mul", res, [a, b], expected_error, expected_result)
def test_sqr(a = 0, b = 0, expected_error = Error.Okay):
args = [arg_to_odin(a)]
try:
res = sqr(*args)
except OSError as e:
print("{} while trying to square {}.".format(e, a))
if EXIT_ON_FAIL: exit(3)
return False
expected_result = None
if expected_error == Error.Okay:
expected_result = a * a
return test("test_sqr", res, [a], expected_error, expected_result)
def test_div(a = 0, b = 0, expected_error = Error.Okay):
args = [arg_to_odin(a), arg_to_odin(b)]
try:
res = div(*args)
except OSError as e:
print("{} while trying divide to {} / {}.".format(e, a, b))
if EXIT_ON_FAIL: exit(3)
return False
expected_result = None
if expected_error == Error.Okay:
#
# We don't round the division results, so if one component is negative, we're off by one.
#
if a < 0 and b > 0:
expected_result = int(-(abs(a) // b))
elif b < 0 and a > 0:
expected_result = int(-(a // abs((b))))
else:
expected_result = a // b if b != 0 else None
return test("test_div", res, [a, b], expected_error, expected_result)
def test_log(a = 0, base = 0, expected_error = Error.Okay):
args = [arg_to_odin(a), base]
res = int_log(*args)
expected_result = None
if expected_error == Error.Okay:
expected_result = int(math.log(a, base))
return test("test_log", res, [a, base], expected_error, expected_result)
def test_pow(base = 0, power = 0, expected_error = Error.Okay):
args = [arg_to_odin(base), power]
res = int_pow(*args)
expected_result = None
if expected_error == Error.Okay:
if power < 0:
expected_result = 0
else:
# NOTE(Jeroen): Don't use `math.pow`, it's a floating point approximation.
# Use built-in `pow` or `a**b` instead.
expected_result = pow(base, power)
return test("test_pow", res, [base, power], expected_error, expected_result)
def test_sqrt(number = 0, expected_error = Error.Okay):
args = [arg_to_odin(number)]
try:
res = int_sqrt(*args)
except OSError as e:
print("{} while trying to sqrt {}.".format(e, number))
if EXIT_ON_FAIL: exit(3)
return False
expected_result = None
if expected_error == Error.Okay:
if number < 0:
expected_result = 0
else:
expected_result = big_integer_sqrt(number)
return test("test_sqrt", res, [number], expected_error, expected_result)
def root_n(number, root):
u, s = number, number + 1
while u < s:
s = u
t = (root-1) * s + number // pow(s, root - 1)
u = t // root
return s
def test_root_n(number = 0, root = 0, expected_error = Error.Okay):
args = [arg_to_odin(number), root]
res = int_root_n(*args)
expected_result = None
if expected_error == Error.Okay:
if number < 0:
expected_result = 0
else:
expected_result = root_n(number, root)
return test("test_root_n", res, [number, root], expected_error, expected_result)
def test_shl_leg(a = 0, digits = 0, expected_error = Error.Okay):
args = [arg_to_odin(a), digits]
res = int_shl_leg(*args)
expected_result = None
if expected_error == Error.Okay:
expected_result = a << (digits * 60)
return test("test_shl_leg", res, [a, digits], expected_error, expected_result)
def test_shr_leg(a = 0, digits = 0, expected_error = Error.Okay):
args = [arg_to_odin(a), digits]
res = int_shr_leg(*args)
expected_result = None
if expected_error == Error.Okay:
if a < 0:
# Don't pass negative numbers. We have a shr_signed.
return False
else:
expected_result = a >> (digits * 60)
return test("test_shr_leg", res, [a, digits], expected_error, expected_result)
def test_shl(a = 0, bits = 0, expected_error = Error.Okay):
args = [arg_to_odin(a), bits]
res = int_shl(*args)
expected_result = None
if expected_error == Error.Okay:
expected_result = a << bits
return test("test_shl", res, [a, bits], expected_error, expected_result)
def test_shr(a = 0, bits = 0, expected_error = Error.Okay):
args = [arg_to_odin(a), bits]
res = int_shr(*args)
expected_result = None
if expected_error == Error.Okay:
if a < 0:
# Don't pass negative numbers. We have a shr_signed.
return False
else:
expected_result = a >> bits
return test("test_shr", res, [a, bits], expected_error, expected_result)
def test_shr_signed(a = 0, bits = 0, expected_error = Error.Okay):
args = [arg_to_odin(a), bits]
res = int_shr_signed(*args)
expected_result = None
if expected_error == Error.Okay:
expected_result = a >> bits
return test("test_shr_signed", res, [a, bits], expected_error, expected_result)
def test_factorial(number = 0, expected_error = Error.Okay):
args = [number]
try:
res = int_factorial(*args)
except OSError as e:
print("{} while trying to factorial {}.".format(e, number))
if EXIT_ON_FAIL: exit(3)
return False
expected_result = None
if expected_error == Error.Okay:
expected_result = math.factorial(number)
return test("test_factorial", res, [number], expected_error, expected_result)
def test_gcd(a = 0, b = 0, expected_error = Error.Okay):
args = [arg_to_odin(a), arg_to_odin(b)]
res = int_gcd(*args)
expected_result = None
if expected_error == Error.Okay:
expected_result = math.gcd(a, b)
return test("test_gcd", res, [a, b], expected_error, expected_result)
def test_lcm(a = 0, b = 0, expected_error = Error.Okay):
args = [arg_to_odin(a), arg_to_odin(b)]
res = int_lcm(*args)
expected_result = None
if expected_error == Error.Okay:
expected_result = big_integer_lcm(a, b)
return test("test_lcm", res, [a, b], expected_error, expected_result)
def test_is_square(a = 0, b = 0, expected_error = Error.Okay):
args = [arg_to_odin(a)]
res = is_square(*args)
expected_result = None
if expected_error == Error.Okay:
expected_result = str(big_integer_sqrt(a) ** 2 == a) if a > 0 else "False"
return test("test_is_square", res, [a], expected_error, expected_result)
# TODO(Jeroen): Make sure tests cover edge cases, fast paths, and so on.
#
# The last two arguments in tests are the expected error and expected result.
#
# The expected error defaults to None.
# By default the Odin implementation will be tested against the Python one.
# You can override that by supplying an expected result as the last argument instead.
TESTS = {
test_add: [
[ 1234, 5432],
],
test_sub: [
[ 1234, 5432],
],
test_mul: [
[ 1234, 5432],
[ 0xd3b4e926aaba3040e1c12b5ea553b5, 0x1a821e41257ed9281bee5bc7789ea7 ],
[ 1 << 21_105, 1 << 21_501 ],
[
173004933678092711595681968608438676197664938049685629580473369038276067962252149849992137878499957004027167192528224484422792651325494750576045326575192523336303001671022352945361111415009621435887687154421568093235309739789712262198437509247413339305329497725569854838050177916573285176333823036357809376376943910260917175826874681608696011310688249945838730766954221195270491215735657686196197276859390555442097852858099538655435952022373382168804035693259946090364200459398925822409006620020581154544932834287498500493698903815194968031524898191572004112487639615367525474654486686702814920335097674444543522512652079806417137634398429663483880342291830129825498498266559990237937370546883578196978980740085725633735638339396194856748820486678256166151654274189472152526337659649593450641533067118593429068213979694143941138460490166499537827371056997450571675288614527333833389183236670004876202325474156930725159975823723377378142909191805151879968682441708428808365144816539538003938101536036377397167312131249840525093160096636827188896948609087411177646634330696412864701655550914720295992852549509128531377840035494550154760612260817404942645828390665460501727276278939486253063145637867588599661852098846639168829579853325380976531641088281099169083706523900752046676600412743168902225391991113540794792663807700542665104853501317581055952425547235489720209822160202334365130769309259459536091633357471279331156609674023250517423592679667076262586704279365513023852198502520449455143108696482539320574251585287452328848503405547872536288968807039383427804216453780376385105591433123917812238083510876697607703414344156760229124307798668772500003950977613426925594836567946200550628674963535569296767800013740376929401629707406015975995831733383818310296157724735308039189938092543701923236188365802146800862672634099863375801869300779142093358816982181010104945819832550001771695168169680801289329726192927681542189728996443394227068811958343521648576614426009056076544129487725821255054033710251876249912907488823432296322937857856798881671582230101070940307539378998977067552777185413291207231526060090979247403347566537048882205501357270333142136625025385796130133023886483084445829260500591432537561824973303162353693462453685234361651566105368117395526963873711694723894824954862981982799884695945074972536980498627192774958204598029928991777698867789510409474596245251249168095604577282355540403000316293774044384586746974690440802522389578280788685523953798913242300637211960086820597313360484476956979114560801644403294619102020057653424339419391280109172272224151977752690650512476390021198293707261871516181856514568530692731519932281887686061219794123626078224317259804516115673425942206693200289351256141931098182585127299985894998333743689030236534466648141672024806131184517810473589270567586415987303198985381658678703339003467339930252704896900057159705650047179948561960768296116399660545868090051814230264090024434793745087039625876868640787717705881261004354982249593051334210130168537726795070902391312311818481048046928036356256488465383197020166743258560361561949049422469397299805302737523011870980192630003407905301896175873043733232525225135087120385628858101472951411956002814870218091511713339807936382910393052968504459236721625536719034418226279583189139676134537948655300361907729082737983492411849235299127845197021586098516135974048921897904877184863073456177234041396228296195180483962519204352654110085913576966438935353965363038761678654332293642984322611477630386486151169508850675463807141318342507515741203334487811043679524863379331947870659078789402911489037387730864761248047513521404946496397896066890282729825706306870717649535554139697652969879144346177010713479829293966682425086590668663669829819712127520861739979889390966316989099653644358241504753616553617595122893909537026229754073954703051725596695254725770214596794901207220102851130185271879436431942024462144689232905355324614814411208134936162444277177238875590731696443847885921827590973723352594903631757103399576610592766078913138825157122785455397427939970849605195638086338459362096895997148552923064905388148403174518142665517867684801775305240761117259864499401505591524646035468884862442287685783534173584216134602254020470252226715845860298485982659996154502226029631627661417805366381349640830179450372516309926381629324035330926202572812300868943350565866328506252388063168169877192161255780247606176524063956158859526581729432323397025083784057519440746423422297908447407795803778583538166658268787752006794327854401708795863970512954260128505882428557272511660175157745401461506456269140668244395329095519068277285767326916642023949758136739378998482778435910601090690705863173042820325203851750762888654661290926733093369511466990991565889994765598596616981189226241742716670168541187753740468242883574347716326797978072508203439305663660888155247641110202645907846530051669433827791654309050289582791709222786017090016946725717367407404046842131919647349198017831706487325061475819628758434500209483186116806361607715172026386394966520253764583904093528570769944236436156364305603335814857278765438664438262342731252565609306490248486760047559160614817615776624501731032353136843210815012856040104848034550739587476521487143917356552305150335043981788222235277078996654082661880293228955275762675382106245639478656468434529208683376459252520443625975029868923130235180687230451510513567788065239837672153784845270614860800457870824353896067043857428179903232229796281205096031206964909619125091706917710921259525810646231789184098152911486418467467125052588578112013379561016311707156873180883310350125807259489482214646867530138601789035429089169566452732346460059489746130976353918437401434853111995893079354785728979722542287963930457948116425636200981713404337570563841972734427878596144295848173387452734040583840835814458252628248126861947119158769599635259777920115279528112423889008255213274318566878535642226885906636687807126929015970094415559086647671233235471865353716680903879881713826461781475629645884350519368611260867854577444879176887053568076613169798214595268853569595240890318102154466760965786272278413839097866010690990596039871050036876065754858890788129638718425677306250721022444685302309631901424401107405891314785542588430460724443042466862273012234254563377534784989375711721584550706027692032,
27921373056168038161257363712029738425883469078710601930545962210544316372483465257896797850023481327274033810503043334035215874819993724587326836320749466553772269405862923195362824332887851405213533433081208077156850648821375930352989166783200833746615959106127755671557019089964388317139498837845502815699228224576224832082010692514229182534082681124312513588088460719847011662533322825168476247349637810548383203683788060854075780036705184536653420460018898323931191179813417633106229797607551549089026756638561795791707955494700054097641970714383000674899021750893302230644329497266339848911912171769235723440313194551652213901008256355889302387122112229006307559169315600942861958053017566728562253629002443850692334093148048005559610551121569158961794952095315210914353826025959066814535892039604093309786815342207016366272954482114925150885518563022063368206889248765418628524333157795784017392551438673161938072258257150883329120797624519879153149913280879378693068701852318396001627324681045815861522360007508243109952378642933430762868134726919084609821795490362157999016116064231034860639681441806435957537781045208562955713722103156767070718592688233144071201419766753972173367317507959950852320315507306016060444592155708893619839649184725346685260069511235840139246081015702346048774483210928885566032379712442026511097124621617457735476863128849586131720300576998529551409490562338285216488100148921640151321534350115714453812413337804225371235554224356096298621201743011245230555215764853803543016714701416612120135738613518840557707629149064958859492225609997288249516884401079342273741541186798177437118085288099547388493592900012094967231746552401413599245524633300588813714064766002830979707229930540022588341901036417799649742533569314603600481627728046014460223994310150793171127674615782367612880131607895396414724397621811552220542148980904127280622955717313779398680717189852828686708843557572244315079273457323723041632800998667368727218921046369617181011435686023454689440463983820722252718343013045726108154912390300992917678826287705538156556621758381877110997187922902095265140917070240889656250342587076337793732433462686483290111539332867700431044178095521248081021368966759940895472785930040730153629684635995965788085543085208194776007093991688316742552338141659784385260564644783610783915703019597479512896823750877844542548758322212972052239012888385630605427035936855277508691449937276903894116061956462348195722494495672432544657400064829861415069347640839580936967350820269034590696679765474765160468903961916672270696236023987243935299572074869302371087278165987032523363724772714477346208742592577951283227941915447718054110253967647110209756879542998676114595263890839641099619474409784706275886498148665913033288931998613751613519583111929535476102752261935114458933224121324795776056432597367967005026776276762670411084627024982610652943026725110496912230298567784614134993889023729853254893543811138284001285160996437535564318062528241338453532027185407578241810084261507643858275906100222466448888360917092102502563981410513125139429289542814362352032125673290748931506233519795206784901394602073496408432914119355845669971921611206591398026467420563740223489661593842720925269702370179245643633444935353522942663811405494524391973367251708873816973768868670467493235943431916108424956497368257423161191304276994434754577135984784663467013822984203379501201099957586074307014285676723507079014080927933067729733620324679419782039849016981965321079742660611838438556389842201932201637058869179931697403014787176863501380615739484487415468573855359079212387368551692910628723440977929579930078782255702184840705464727654359256672319160541618101408889768244966379114134194579290092691830062053199840454186374987682037197782617554498504972123539223333197139111223340123431349005989161322706046448294549136345275636294040585686238109527559986400330781564511555132675600354845435740430195387843392918716292423250123841352049448829542813895534778791521891241856409599135740777633463825220674104706642419298985035183765602197431989429173915463411013465768550277612276157418128572127814622862912815904038151008662664231788968389993262883675073896148539523284673482644482548483650586168693376441889016946969955978380722594975748782506306008391421791306366225409928561739591390044573904256656957924246937531253036012624225677004090039680930516873227440444945938274357618114661440761649503158071532529359890361758900851579655708804155875515793218083554490058616347116332425676666301140415486423553320048153504238362373557855535779046905557828526263489747753395212155760397974082306317825624337661338876792738708674499286422559685173420182076306148908180037293202372013787170146701071605439119147392804755048236116840492061241352342396494262648613338171065533649263180829503174821400418274800779191254479284048946851570095174570247223581902756503786185677330697753498186730412069147629747609772838632317338351257920938494712870708108038934101858579447001128824612055853807631590752239142182960806895654726819917774980738692457659411911279127194423188770547312066019180523243169061317538583293927239186467763609863895766055561960747766546253694008644745054199737969293100912901784372603816131617671119155727053285875943648840248351161629947740946487434471715418378491879022464648862542696518000435077035228171974321300460080123902690324244967059745295054118693613269773067619624107387063059985176967572604219180317779786496083874303004124515445219452102075067471953429040119355742883891822452982864094025598028112115866711428585736838632820309749474510868162545829275146258077311244956467165215185174229175240810808694596057113599171098718605793050842043814323849939995836210279724499252205942768969083291862735219152587270457233948203020805477393844251381142530356605396377253291045107451365714635714156250079771050546004769806588881695574400621078157503613361567127625244561059281382952366547354082230802366776019129544180040782867889636785460187181683255211572956144897104392064626327350385247491880762073139154625615894769102398511621294884969897760564967615974545842772162201569120603067788742145776137782588656202210677005605640511483705690705376956476307810433238043720219619341572756300400535126782583804935228625157182123927165307735705469066125233392716412346136127486029948714957553659655924443537095499722362708631898523515388985062426376618128327856053637342559468074942610162506146919250102684545838473478543490121885655498752,
]
],
test_sqr: [
[ 5432],
[ 0xd3b4e926aaba3040e1c12b5ea553b5 ],
],
test_div: [
[ 54321, 12345],
[ 55431, 0, Error.Division_by_Zero],
[ 12980742146337069150589594264770969721, 4611686018427387904 ],
[ 831956404029821402159719858789932422, 243087903122332132 ],
],
test_log: [
[ 3192, 1, Error.Invalid_Argument],
[ -1234, 2, Error.Math_Domain_Error],
[ 0, 2, Error.Math_Domain_Error],
[ 1024, 2],
],
test_pow: [
[ 0, -1, Error.Math_Domain_Error ], # Math
[ 0, 0 ], # 1
[ 0, 2 ], # 0
[ 42, -1,], # 0
[ 42, 1 ], # 1
[ 42, 0 ], # 42
[ 42, 2 ], # 42*42
[ 1023423462055631945665902260039819522, 6],
[ 2351415513563017480724958108064794964140712340951636081608226461329298597792428177392182921045756382154475969841516481766099091057155043079113409578271460350765774152509347176654430118446048617733844782454267084644777022821998489944144604889308377152515711394170267839394315842510152114743680838721625924309675796181595284284935359605488617487126635442626578631, 4],
],
test_sqrt: [
[ -1, Error.Invalid_Argument, ],
[ 42, Error.Okay, ],
[ 12345678901234567890, Error.Okay, ],
[ 1298074214633706907132624082305024, Error.Okay, ],
[ 686885735734829009541949746871140768343076607029752932751182108475420900392874228486622313727012705619148037570309621219533087263900443932890792804879473795673302686046941536636874184361869252299636701671980034458333859202703255467709267777184095435235980845369829397344182319113372092844648570818726316581751114346501124871729572474923695509057166373026411194094493240101036672016770945150422252961487398124677567028263059046193391737576836378376192651849283925197438927999526058932679219572030021792914065825542626400207956134072247020690107136531852625253942429167557531123651471221455967386267137846791963149859804549891438562641323068751514370656287452006867713758971418043865298618635213551059471668293725548570452377976322899027050925842868079489675596835389444833567439058609775325447891875359487104691935576723532407937236505941186660707032433807075470656782452889754501872408562496805517394619388777930253411467941214807849472083814447498068636264021405175653742244368865090604940094889189800007448083930490871954101880815781177612910234741529950538835837693870921008635195545246771593130784786737543736434086434015200264933536294884482218945403958647118802574342840790536176272341586020230110889699633073513016344826709214, Error.Okay, ],
],
test_root_n: [
[ 1298074214633706907132624082305024, 2, Error.Okay, ],
],
test_shl_leg: [
[ 3192, 1 ],
[ 1298074214633706907132624082305024, 2 ],
[ 1024, 3 ],
],
test_shr_leg: [
[ 3680125442705055547392, 1 ],
[ 1725436586697640946858688965569256363112777243042596638790631055949824, 2 ],
[ 219504133884436710204395031992179571, 2 ],
],
test_shl: [
[ 3192, 1 ],
[ 1298074214633706907132624082305024, 2 ],
[ 1024, 3 ],
],
test_shr: [
[ 3680125442705055547392, 1 ],
[ 1725436586697640946858688965569256363112777243042596638790631055949824, 2 ],
[ 219504133884436710204395031992179571, 2 ],
],
test_shr_signed: [
[ -611105530635358368578155082258244262, 12 ],
[ -149195686190273039203651143129455, 12 ],
[ 611105530635358368578155082258244262, 12 ],
[ 149195686190273039203651143129455, 12 ],
],
test_factorial: [
[ 6_000 ], # Regular factorial, see cutoff in common.odin.
[ 12_345 ], # Binary split factorial
],
test_gcd: [
[ 23, 25, ],
[ 125, 25, ],
[ 125, 0, ],
[ 0, 0, ],
[ 0, 125,],
],
test_lcm: [
[ 23, 25,],
[ 125, 25, ],
[ 125, 0, ],
[ 0, 0, ],
[ 0, 125,],
],
test_is_square: [
[ 12, ],
[ 92232459121502451677697058974826760244863271517919321608054113675118660929276431348516553336313179167211015633639725554914519355444316239500734169769447134357534241879421978647995614218985202290368055757891124109355450669008628757662409138767505519391883751112010824030579849970582074544353971308266211776494228299586414907715854328360867232691292422194412634523666770452490676515117702116926803826546868467146319938818238521874072436856528051486567230096290549225463582766830777324099589751817442141036031904145041055454639783559905920619197290800070679733841430619962318433709503256637256772215111521321630777950145713049902839937043785039344243357384899099910837463164007565230287809026956254332260375327814271845678201, ]
],
}
if not args.fast_tests:
TESTS[test_factorial].append(
# This one on its own takes around 800ms, so we exclude it for FAST_TESTS
[ 10_000 ],
)
total_passes = 0
total_failures = 0
#
# test_shr_signed also tests shr, so we're not going to test shr randomly.
#
RANDOM_TESTS = [
test_add, test_sub, test_mul, test_sqr,
test_log, test_pow, test_sqrt, test_root_n,
test_shl_leg, test_shr_leg, test_shl, test_shr_signed,
test_gcd, test_lcm, test_is_square, test_div,
]
SKIP_LARGE = [
test_pow, test_root_n, # test_gcd,
]
SKIP_LARGEST = []
# Untimed warmup.
for test_proc in TESTS:
for t in TESTS[test_proc]:
res = test_proc(*t)
if __name__ == '__main__':
print("\n---- math/big tests ----")
print()
max_name = 0
for test_proc in TESTS:
max_name = max(max_name, len(test_proc.__name__))
fmt_string = "{name:>{max_name}}: {count_pass:7,} passes and {count_fail:7,} failures in {timing:9.3f} ms."
fmt_string = fmt_string.replace("{max_name}", str(max_name))
for test_proc in TESTS:
count_pass = 0
count_fail = 0
TIMINGS = {}
for t in TESTS[test_proc]:
start = time.perf_counter()
res = test_proc(*t)
diff = time.perf_counter() - start
TOTAL_TIME += diff
if test_proc not in TIMINGS:
TIMINGS[test_proc] = diff
else:
TIMINGS[test_proc] += diff
if res:
count_pass += 1
total_passes += 1
else:
count_fail += 1
total_failures += 1
print(fmt_string.format(name=test_proc.__name__, count_pass=count_pass, count_fail=count_fail, timing=TIMINGS[test_proc] * 1_000))
for BITS, ITERATIONS in BITS_AND_ITERATIONS:
print()
print("---- math/big with two random {bits:,} bit numbers ----".format(bits=BITS))
print()
#
# We've already tested up to the 10th root.
#
TEST_ROOT_N_PARAMS = [2, 3, 4, 5, 6]
for test_proc in RANDOM_TESTS:
if BITS > 1_200 and test_proc in SKIP_LARGE: continue
if BITS > 4_096 and test_proc in SKIP_LARGEST: continue
count_pass = 0
count_fail = 0
TIMINGS = {}
UNTIL_ITERS = ITERATIONS
if test_proc == test_root_n and BITS == 1_200:
UNTIL_ITERS /= 10
UNTIL_TIME = TOTAL_TIME + BITS / args.timed_bits
# We run each test for a second per 20k bits
index = 0
while we_iterate():
a = randint(-(1 << BITS), 1 << BITS)
b = randint(-(1 << BITS), 1 << BITS)
if test_proc == test_div:
# We've already tested division by zero above.
bits = int(BITS * 0.6)
b = randint(-(1 << bits), 1 << bits)
if b == 0:
b == 42
elif test_proc == test_log:
# We've already tested log's domain errors.
a = randint(1, 1 << BITS)
b = randint(2, 1 << 60)
elif test_proc == test_pow:
b = randint(1, 10)
elif test_proc == test_sqrt:
a = randint(1, 1 << BITS)
b = Error.Okay
elif test_proc == test_root_n:
a = randint(1, 1 << BITS)
b = TEST_ROOT_N_PARAMS[index]
index = (index + 1) % len(TEST_ROOT_N_PARAMS)
elif test_proc == test_shl_leg:
b = randint(0, 10);
elif test_proc == test_shr_leg:
a = abs(a)
b = randint(0, 10);
elif test_proc == test_shl:
b = randint(0, min(BITS, 120))
elif test_proc == test_shr_signed:
b = randint(0, min(BITS, 120))
elif test_proc == test_is_square:
a = randint(0, 1 << BITS)
elif test_proc == test_lcm:
smallest = min(a, b)
biggest = max(a, b)
# Randomly swap biggest and smallest
if randint(1, 11) % 2 == 0:
smallest, biggest = biggest, smallest
a, b = smallest, biggest
else:
b = randint(0, 1 << BITS)
res = None
start = time.perf_counter()
res = test_proc(a, b)
diff = time.perf_counter() - start
TOTAL_TIME += diff
if test_proc not in TIMINGS:
TIMINGS[test_proc] = diff
else:
TIMINGS[test_proc] += diff
if res:
count_pass += 1; total_passes += 1
else:
count_fail += 1; total_failures += 1
print(fmt_string.format(name=test_proc.__name__, count_pass=count_pass, count_fail=count_fail, timing=TIMINGS[test_proc] * 1_000))
print()
print("---- THE END ----")
print()
print(fmt_string.format(name="total", count_pass=total_passes, count_fail=total_failures, timing=TOTAL_TIME * 1_000))
if total_failures:
exit(1)
|