aboutsummaryrefslogtreecommitdiff
path: root/tests/core/mem/test_core_mem.odin
blob: 9d64e50a3e923c2c85c4b3e4b867b106fdc1a8f9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
package test_core_mem

import "core:mem"
import "core:mem/tlsf"
import "core:mem/virtual"
import "core:testing"
import "core:slice"

@test
test_tlsf_bitscan :: proc(t: ^testing.T) {
	Vector :: struct {
		op:  enum{ffs, fls, fls_uint},
		v:   union{u32, uint},
		exp: i32,
	}
	Tests := []Vector{
		{.ffs,      u32 (0x0000_0000_0000_0000), -1},
		{.ffs,      u32 (0x0000_0000_0000_0000), -1},
		{.fls,      u32 (0x0000_0000_0000_0000), -1},
		{.ffs,      u32 (0x0000_0000_0000_0001),  0},
		{.fls,      u32 (0x0000_0000_0000_0001),  0},
		{.ffs,      u32 (0x0000_0000_8000_0000), 31},
		{.ffs,      u32 (0x0000_0000_8000_8000), 15},
		{.fls,      u32 (0x0000_0000_8000_0008), 31},
		{.fls,      u32 (0x0000_0000_7FFF_FFFF), 30},
		{.fls_uint, uint(0x0000_0000_8000_0000), 31},
		{.fls_uint, uint(0x0000_0001_0000_0000), 32},
		{.fls_uint, uint(0xffff_ffff_ffff_ffff), 63},
	}

	for test in Tests {
		switch test.op {
		case .ffs:
			res := tlsf.ffs(test.v.?)
			testing.expectf(t, res == test.exp, "Expected tlsf.ffs(0x%08x) == %v, got %v", test.v, test.exp, res)
		case .fls:
			res := tlsf.fls(test.v.?)
			testing.expectf(t, res == test.exp, "Expected tlsf.fls(0x%08x) == %v, got %v", test.v, test.exp, res)
		case .fls_uint:
			res := tlsf.fls_uint(test.v.?)
			testing.expectf(t, res == test.exp, "Expected tlsf.fls_uint(0x%16x) == %v, got %v", test.v, test.exp, res)
		}
	}
}

@(test)
test_align_bumping_block_limit :: proc(t: ^testing.T) {
	a: virtual.Arena
	defer virtual.arena_destroy(&a)

	data, err := virtual.arena_alloc(&a, 4193371, 1)
	testing.expect_value(t, err, nil)
	testing.expect(t, len(data) == 4193371)

	data, err = virtual.arena_alloc(&a, 896, 64)
	testing.expect_value(t, err, nil)
	testing.expect(t, len(data) == 896)
}

@(test)
tlsf_test_overlap_and_zero :: proc(t: ^testing.T) {
	default_allocator := context.allocator
	alloc: tlsf.Allocator
	defer tlsf.destroy(&alloc)

	NUM_ALLOCATIONS :: 1_000
	BACKING_SIZE    :: NUM_ALLOCATIONS * (1_000 + size_of(uintptr))

	if err := tlsf.init_from_allocator(&alloc, default_allocator, BACKING_SIZE); err != .None {
		testing.fail_now(t, "TLSF init error")
	}
	context.allocator = tlsf.allocator(&alloc)

	allocations := make([dynamic][]byte, 0, NUM_ALLOCATIONS, default_allocator)
	defer delete(allocations)

	err: mem.Allocator_Error
	s:   []byte

	for size := 1; err == .None && size <= NUM_ALLOCATIONS; size += 1 {
		s, err = make([]byte, size)
		append(&allocations, s)
	}

	slice.sort_by(allocations[:], proc(a, b: []byte) -> bool {
		return uintptr(raw_data(a)) < uintptr(raw_data((b)))
	})

	for i in 0..<len(allocations) - 1 {
		fail_if_allocations_overlap(t, allocations[i], allocations[i + 1])
		fail_if_not_zeroed(t, allocations[i])
	}
}

@(test)
tlsf_test_grow_pools :: proc(t: ^testing.T) {
	default_allocator := context.allocator
	alloc: tlsf.Allocator
	defer tlsf.destroy(&alloc)

	NUM_ALLOCATIONS    :: 10
	ALLOC_SIZE         :: mem.Megabyte
	BACKING_SIZE_INIT  := tlsf.estimate_pool_size(1, ALLOC_SIZE, 64)
	BACKING_SIZE_GROW  := tlsf.estimate_pool_size(1, ALLOC_SIZE, 64)

	allocations := make([dynamic][]byte, 0, NUM_ALLOCATIONS, default_allocator)
	defer delete(allocations)

	if err := tlsf.init_from_allocator(&alloc, default_allocator, BACKING_SIZE_INIT, BACKING_SIZE_GROW); err != .None {
		testing.fail_now(t, "TLSF init error")
	}
	context.allocator = tlsf.allocator(&alloc)

	for len(allocations) < NUM_ALLOCATIONS {
		s := make([]byte, ALLOC_SIZE) or_break
		testing.expect_value(t, len(s), ALLOC_SIZE)
		append(&allocations, s)
	}

	testing.expect_value(t, len(allocations), NUM_ALLOCATIONS)

	slice.sort_by(allocations[:], proc(a, b: []byte) -> bool {
		return uintptr(raw_data(a)) < uintptr(raw_data((b)))
	})

	for i in 0..<len(allocations) - 1 {
		fail_if_allocations_overlap(t, allocations[i], allocations[i + 1])
		fail_if_not_zeroed(t, allocations[i])
	}
}

@(test)
tlsf_test_free_all :: proc(t: ^testing.T) {
	default_allocator := context.allocator
	alloc: tlsf.Allocator
	defer tlsf.destroy(&alloc)

	NUM_ALLOCATIONS :: 10
	ALLOCATION_SIZE :: mem.Megabyte
	BACKING_SIZE    :: NUM_ALLOCATIONS * (ALLOCATION_SIZE + size_of(uintptr))

	if init_err := tlsf.init_from_allocator(&alloc, default_allocator, BACKING_SIZE); init_err != .None {
		testing.fail_now(t, "TLSF init error")
	}
	context.allocator = tlsf.allocator(&alloc)

	allocations: [2][dynamic][]byte
	allocations[0] = make([dynamic][]byte, 0, NUM_ALLOCATIONS, default_allocator) // After `init`
	allocations[1] = make([dynamic][]byte, 0, NUM_ALLOCATIONS, default_allocator) // After `free_all`
	defer {
		delete(allocations[0])
		delete(allocations[1])
	}

	for {
		s := make([]byte, ALLOCATION_SIZE) or_break
		append(&allocations[0], s)
	}
	testing.expect(t, len(allocations[0]) >= 10)

	free_all(tlsf.allocator(&alloc))

	for {
		s := make([]byte, ALLOCATION_SIZE) or_break
		append(&allocations[1], s)
	}
	testing.expect(t, len(allocations[1]) >= 10)

	for i in 0..<len(allocations[0]) {
		s0, s1 := allocations[0][i], allocations[1][i]
		assert(raw_data(s0) ==  raw_data((s1)))
		assert(len(s0)      ==  len((s1)))
	}
}

fail_if_not_zeroed :: proc(t: ^testing.T, a: []byte) {
	for b in a {
		if b != 0 {
			testing.fail_now(t, "Allocation wasn't zeroed")
		}
	}
}

fail_if_allocations_overlap :: proc(t: ^testing.T, a, b: []byte) {
	a, b := a, b

	a_start := uintptr(raw_data(a))
	a_end   := a_start + uintptr(len(a))
	b_start := uintptr(raw_data(b))
	b_end   := b_start + uintptr(len(b))

	if a_end >= b_end && b_end >= a_start {
		testing.fail_now(t, "Allocations overlapped")
	}
}


// This merely does a few simple operations to test basic sanity.
//
// A serious test of an allocator would require hooking it up to a benchmark or
// a large, complicated program in order to get all manner of usage patterns.
basic_sanity_test :: proc(t: ^testing.T, allocator: mem.Allocator, limit: int, loc := #caller_location) -> bool {
	context.allocator = allocator

	{
		a := make([dynamic]u8)
		for i in 0..<limit {
			append(&a, u8(i))
		}
		testing.expect_value(t, len(a), limit, loc) or_return
		for i in 0..<limit {
			testing.expect_value(t, a[i], u8(i), loc) or_return
		}
		delete(a)
	}

	{
		v := make([]u8, limit)
		testing.expect_value(t, len(v), limit, loc) or_return
		for i in 0..<limit {
			v[i] = u8(i)
			testing.expect_value(t, v[i], u8(i), loc) or_return
		}
		delete(v)
	}

	{
		for i in 0..<limit {
			v := make([]u8, 1)
			v[0] = u8(i)
			testing.expect_value(t, v[0], u8(i), loc) or_return
			delete(v)
		}
	}

	return true
}

@test
test_scratch :: proc(t: ^testing.T) {
	N :: 4096
	sa: mem.Scratch_Allocator
	mem.scratch_init(&sa, N)
	defer mem.scratch_destroy(&sa)
	basic_sanity_test(t, mem.scratch_allocator(&sa), N / 4)
	basic_sanity_test(t, mem.scratch_allocator(&sa), N / 4)
}

@test
test_stack :: proc(t: ^testing.T) {
	N :: 4096
	buf: [N]u8

	sa: mem.Stack
	mem.stack_init(&sa, buf[:])
	basic_sanity_test(t, mem.stack_allocator(&sa), N / 4)
	basic_sanity_test(t, mem.stack_allocator(&sa), N / 4)
}

@test
test_small_stack :: proc(t: ^testing.T) {
	N :: 4096
	buf: [N]u8

	ss: mem.Small_Stack
	mem.small_stack_init(&ss, buf[:])
	basic_sanity_test(t, mem.small_stack_allocator(&ss), N / 4)
	// The test cannot be run a second time on top of the last for a Small
	// Stack because the dynamic array inside will resize and leave a gap, thus
	// limiting the amount of space.
	basic_sanity_test(t, mem.small_stack_allocator(&ss), N / 8)
}

@test
test_dynamic_arena :: proc(t: ^testing.T) {
	da: mem.Dynamic_Arena
	mem.dynamic_arena_init(&da)
	defer mem.dynamic_arena_destroy(&da)
	basic_sanity_test(t, mem.dynamic_arena_allocator(&da), da.block_size / 4)
	basic_sanity_test(t, mem.dynamic_arena_allocator(&da), da.block_size / 4)
}

@test
test_buddy :: proc(t: ^testing.T) {
	N :: 8192
	buf: [N]u8

	base := &buf[0]
	address := mem.align_forward(base, size_of(mem.Buddy_Block))
	delta := uintptr(address) - uintptr(base)

	ba: mem.Buddy_Allocator

	mem.buddy_allocator_init(&ba, buf[delta:delta+N/2], size_of(mem.Buddy_Block))
	basic_sanity_test(t, mem.buddy_allocator(&ba), N / 16)
	basic_sanity_test(t, mem.buddy_allocator(&ba), N / 16)
}

@test
test_rollback :: proc(t: ^testing.T) {
	N :: 4096
	buf: [N]u8

	rb: mem.Rollback_Stack
	mem.rollback_stack_init(&rb, buf[:])
	basic_sanity_test(t, mem.rollback_stack_allocator(&rb), N / 8)
	basic_sanity_test(t, mem.rollback_stack_allocator(&rb), N / 8)
}