1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
|
package server
import "core:fmt"
import "core:log"
import "core:odin/ast"
import "core:strconv"
// Attempts to resolve the type of the builtin proc by following the rules of the odin type checker
// defined in `check_builtin.cpp`.
// We don't need to worry about whether the inputs to the procs are valid which eliminates most edge cases.
// The basic rules are as follows:
// - For values not known at compile time (eg values return from procs), just return that type.
// The correct value will either be that type or a compiler error.
// - If all values are known at compile time, then we essentially compute the relevant value
// and return that type.
// There is a difference in the returned types between constants and variables. Constants will use an untyped
// value whereas variables will be typed.
check_builtin_proc_return_type :: proc(
ast_context: ^AstContext,
symbol: Symbol,
call: ^ast.Call_Expr,
is_mutable: bool,
) -> (
^ast.Expr,
bool,
) {
if symbol.pkg == "$builtin" {
switch symbol.name {
case "max", "min":
curr_candidate: ^ast.Basic_Lit
curr_value := 0.0
for arg, i in call.args {
if lit, value, ok := get_basic_lit_value(arg); ok {
if i != 0 {
if compare_basic_lit_value(value, curr_value, symbol.name) {
curr_candidate = lit
curr_value = value
}
} else {
curr_candidate = lit
curr_value = value
}
} else {
return get_return_expr(ast_context, arg, is_mutable), true
}
}
if curr_candidate != nil {
return convert_candidate(curr_candidate, is_mutable), true
}
case "abs":
for arg in call.args {
if lit, _, ok := get_basic_lit_value(arg); ok {
return convert_candidate(lit, is_mutable), true
}
return get_return_expr(ast_context, arg, is_mutable), true
}
case "clamp":
if len(call.args) == 3 {
value_lit, value_value, value_ok := get_basic_lit_value(call.args[0])
if !value_ok {
return get_return_expr(ast_context, call.args[0], is_mutable), true
}
minimum_lit, minimum_value, minimum_ok := get_basic_lit_value(call.args[1])
if !minimum_ok {
return get_return_expr(ast_context, call.args[1], is_mutable), true
}
maximum_lit, maximum_value, maximum_ok := get_basic_lit_value(call.args[2])
if !maximum_ok {
return get_return_expr(ast_context, call.args[2], is_mutable), true
}
if value_value < minimum_value {
return convert_candidate(minimum_lit, is_mutable), true
}
if value_value > maximum_value {
return convert_candidate(maximum_lit, is_mutable), true
}
return convert_candidate(value_lit, is_mutable), true
}
case "complex":
candidate: ^ast.Basic_Lit
for arg in call.args {
if lit, _, ok := get_basic_lit_value(arg); ok {
candidate = lit
} else {
expr := get_complex_return_expr(ast_context, arg)
if ident, ok := expr.derived.(^ast.Ident); ok {
switch ident.name {
case "f16":
ident.name = "complex32"
return ident, true
case "f32":
ident.name = "complex64"
return ident, true
case "f64":
ident.name = "complex128"
return ident, true
}
}
}
}
if candidate != nil {
return convert_complex_candidate(candidate, is_mutable), true
}
case "quaternion":
candidate: ^ast.Basic_Lit
for arg in call.args {
if lit, _, ok := get_basic_lit_value(arg); ok {
candidate = lit
} else {
expr := get_quaternion_return_expr(ast_context, arg)
if ident, ok := expr.derived.(^ast.Ident); ok {
switch ident.name {
case "f16":
ident.name = "quaternion64"
return ident, true
case "f32":
ident.name = "quaternion128"
return ident, true
case "f64":
ident.name = "quaternion256"
return ident, true
}
}
}
}
if candidate != nil {
return convert_quaternion_candidate(candidate, is_mutable), true
}
}
}
return nil, false
}
@(private = "file")
get_return_expr :: proc(ast_context: ^AstContext, expr: ^ast.Expr, is_mutable: bool) -> ^ast.Expr {
if v, ok := expr.derived.(^ast.Field_Value); ok {
return get_return_expr(ast_context, v.value, is_mutable)
}
if ident, ok := expr.derived.(^ast.Ident); ok {
symbol := Symbol{}
if ok := internal_resolve_type_expression(ast_context, ident, &symbol); ok {
if v, ok := symbol.value.(SymbolBasicValue); ok {
return v.ident
} else if v, ok := symbol.value.(SymbolUntypedValue); ok {
lit := ast.new(ast.Basic_Lit, expr.pos, expr.end)
lit.tok = v.tok
return convert_candidate(lit, is_mutable)
}
}
}
return expr
}
@(private = "file")
convert_candidate :: proc(candidate: ^ast.Basic_Lit, is_mutable: bool) -> ^ast.Expr {
if is_mutable {
ident := ast.new(ast.Ident, candidate.pos, candidate.end)
if candidate.tok.kind == .Integer {
ident.name = "int"
} else {
ident.name = "f64"
}
return ident
}
return candidate
}
@(private = "file")
get_complex_return_expr :: proc(ast_context: ^AstContext, expr: ^ast.Expr) -> ^ast.Expr {
if v, ok := expr.derived.(^ast.Field_Value); ok {
return get_complex_return_expr(ast_context, v.value)
}
if ident, ok := expr.derived.(^ast.Ident); ok {
symbol := Symbol{}
if ok := internal_resolve_type_expression(ast_context, ident, &symbol); ok {
if v, ok := symbol.value.(SymbolBasicValue); ok {
return v.ident
} else if v, ok := symbol.value.(SymbolUntypedValue); ok {
// There isn't a token for `Complex` so we just set it to `f64` instead
ident := ast.new(ast.Ident, expr.pos, expr.end)
ident.name = "f64"
return ident
}
}
}
return expr
}
@(private = "file")
convert_complex_candidate :: proc(candidate: ^ast.Basic_Lit, is_mutable: bool) -> ^ast.Expr {
if is_mutable {
ident := ast.new(ast.Ident, candidate.pos, candidate.end)
ident.name = "complex128"
return ident
}
return candidate
}
@(private = "file")
get_quaternion_return_expr :: proc(ast_context: ^AstContext, expr: ^ast.Expr) -> ^ast.Expr {
if v, ok := expr.derived.(^ast.Field_Value); ok {
return get_quaternion_return_expr(ast_context, v.value)
}
if ident, ok := expr.derived.(^ast.Ident); ok {
symbol := Symbol{}
if ok := internal_resolve_type_expression(ast_context, ident, &symbol); ok {
if v, ok := symbol.value.(SymbolBasicValue); ok {
return v.ident
} else if v, ok := symbol.value.(SymbolUntypedValue); ok {
// There isn't a token for `Quaternion` so we just set it to `quaternion256` instead
ident := ast.new(ast.Ident, expr.pos, expr.end)
ident.name = "f64"
return ident
}
}
}
return expr
}
@(private = "file")
convert_quaternion_candidate :: proc(candidate: ^ast.Basic_Lit, is_mutable: bool) -> ^ast.Expr {
if is_mutable {
ident := ast.new(ast.Ident, candidate.pos, candidate.end)
ident.name = "quaternion256"
return ident
}
return candidate
}
@(private = "file")
get_basic_lit_value :: proc(n: ^ast.Expr) -> (^ast.Basic_Lit, f64, bool) {
n := n
if v, ok := n.derived.(^ast.Field_Value); ok {
return get_basic_lit_value(v.value)
}
op := ""
if u, ok := n.derived.(^ast.Unary_Expr); ok {
op = u.op.text
n = u.expr
}
if lit, ok := n.derived.(^ast.Basic_Lit); ok {
text := lit.tok.text
if op != "" {
text = fmt.tprintf("%s%s", op, text)
}
value, ok := strconv.parse_f64(text)
if !ok {
return nil, 0, false
}
return lit, value, true
}
return nil, 0, false
}
@(private = "file")
compare_basic_lit_value :: proc(a, b: f64, name: string) -> bool {
if name == "max" {
return a > b
} else if name == "min" {
return a < b
}
return a > b
}
|